Determination of Stress Intensity Factor K I for a Three-Dimensional Crack Front by the Caustic Method

2016 ◽  
Vol 40 (6) ◽  
pp. 1469-1477
Author(s):  
L. Shang ◽  
D. F. Wu ◽  
Y. Pu ◽  
H. T. Wang
Author(s):  
Masayuki Arai

In this paper, the stress intensity factor KI for the crack front line a − ε(1 + cosmθ), which is slightly perturbed from a complete circular line with a radius of a, is determined. The method used in this study is based upon the perturbation technique developed by Rice for solving the elastic field of a crack whose front slightly deviates from some reference geometry. It is finally shown that the solution for the stress intensity factor matches the results of a three-dimensional finite element analysis.


1988 ◽  
Vol 55 (4) ◽  
pp. 805-813 ◽  
Author(s):  
T. Nakamura ◽  
D. M. Parks

Based on very detailed full-field finite element analysis of the near tip region of a thin isotropic elastic plate, the three-dimensional stress state in the vicinity of a through-crack front is characterized. The computed stress field reveals strong three-dimensional effects within a radial distance of about one-half thickness from the crack-tip. Further away from the tip, through-thickess variation of field quantities decreases and, at the radial distance of approximately 1.5 times the thickness, in-plane stresses merge with the dominant two-dimensional plane stress solutions. These “two-dimensional-three-dimensional” transition distances are essentially independent of the material Poisson’s ratio, yet the amplitude of variation is greatly affected by its value. The influence of Poisson’s ratio is clearly illustrated by local J along the crack front, which shows much higher variation through the thickness for nearly incompressible solids. At points very close to the crack front, relative magnitudes of out-of-plane strain components become very small, and asymptotic plane strain conditions prevail locally. On the mid-plane of the plate, the crack tip field converges to that given by the local plane strain stress intensity factor solution within a radial distance from the tip of less than 0.5 percent of thickness. In addition, it is found that the field near the intersection of crack front and free surface may be characterized by the corner singularity of a quarter infinite crack in a half space. The size of this domain is inferred from the gradient of local stress intensity factor with respect to distance from the free surface, and it appears that the corner singularity region extends up to a spherical radius of about 3 percent of plate thickness away from the intersection. Also the amplitude of the corner singularity field is described by a corner stress intensity factor, and its magnitude is determined for thin plates of various Poisson’s ratios.


2005 ◽  
Vol 492-493 ◽  
pp. 373-378 ◽  
Author(s):  
Ozgur Inan ◽  
Serkan Dag ◽  
Fazil Erdogan

In this study the three – dimensional surface cracking of a graded coating bonded to a homogeneous substrate is considered. The main objective is to model the subcritical crack growth process in the coated medium under a cyclic mechanical or thermal loading. Because of symmetry, along the crack front conditions of mode I fracture and plane strain deformations are assumed to be satisfied. Thus, at a given location on the crack front the crack propagation rate would be a function of the mode I stress intensity factor. A three – dimensional finite element technique for nonhomogeneous elastic solids is used to solve the problem and the displacement correlation technique is used to calculate the stress intensity factor.


2005 ◽  
Vol 128 (2) ◽  
pp. 233-239 ◽  
Author(s):  
M. Perl ◽  
C. Levy ◽  
V. Rallabhandy

The influence of the Bauschinger effect (BE) on the three-dimensional, mode I, stress intensity factor (SIF) distributions for arrays of radial, internal, surface cracks emanating from the bore of a fully or partially autofrettaged thick-walled cylinder is investigated. A thorough comparison between the prevailing SIFs for a “realistic” (Bauschinger effect dependent autofrettage (BEDA)) and those for an “ideal” (Bauschinger effect independent autofrettage (BEIA)) is done. The three-dimensional (3D) analysis is performed via the finite element method and the submodeling technique, employing singular elements along the crack front. Both autofrettage residual stress fields, BEDA and BEIA, are simulated using an equivalent temperature field. More than 300 different crack configurations are analyzed. SIFs for numerous crack arrays (n=1-64 cracks), a wide range of crack depth to wall thickness ratios (a∕t=0.01-0.2), various ellipticities (a∕c=0.5-1.5), and different levels of autofrettage (ε=30-100%) are evaluated. The Bauschinger Effect is found to considerably lower the beneficial stress intensity factor due to autofrettage, KIA, by up to 56%, as compared to the case of ideal autofrettage. The reduction in KIA varies along the crack front with a maximum at the point of intersection between the crack plane and the inner surface of the cylinder, decreasing monotonically toward the deepest point of the crack. The detrimental influence of the BE increases as the number of cracks in the array increases and as crack depth decreases. For a partially autofrettaged cylinder, as the level of overstrain becomes smaller the influence of the BE is considerably reduced. As a result, the SIFs due to 100% BEDA differ by <10% as compared to 60% BEDA, and on the average the difference is only about 2–4%.


Author(s):  
C. W. Smith ◽  
C. T. Liu

This paper describes the application of a laboratory based experimental method [1] to three dimensional cracked body problems in pressure vessels in order to determine the crack shape and stress intensity factor (SIF) distribution along the crack front when the crack shape is not known a-priori. Results for specific problems are presented and conditions and limitation of the method are described.


Sign in / Sign up

Export Citation Format

Share Document