scholarly journals Experimental Investigation of Dynamic Fracture Initiation in PMMA Submerged in Water

2016 ◽  
Vol 2 (3) ◽  
pp. 391-398 ◽  
Author(s):  
Orlando Delpino Gonzales ◽  
Kim Luong ◽  
Heidi Homma ◽  
Veronica Eliasson
1976 ◽  
Vol 43 (1) ◽  
pp. 112-116 ◽  
Author(s):  
L. B. Freund ◽  
G. Herrmann

The dynamic fracture response of a long beam of brittle elastic material subjected to pure bending is studied. If the magnitude of the applied bending moment is increased to a critical value, a crack will propagate from the tensile side of the beam across a cross section. An analysis is presented by means of which the crack length and bending moment at the fracturing section are determined as functions of time after fracture initiation. The main assumption on which the analysis rests is that, due to multiple reflections of stress waves across the thickness of the beam, the stress distribution on the prospective fracture plane ahead of the crack may be adequately approximated by the static distribution appropriate for the instantaneous crack length and net section bending moment. The results of numerical calculations are shown in graphs of crack length, crack tip speed, and fracturing section bending moment versus time. It is found that the crack tip accelerates very quickly to a speed near the characteristic terminal speed for the material, travels at this speed through most of the beam thickness, and then rapidly decelerates in the final stage of the process. The results also apply for plane strain fracture of a plate in pure bending provided that the value of the elastic modulus is appropriately modified.


1993 ◽  
Vol 24 (4) ◽  
Author(s):  
Sunghak Lee ◽  
Je Won Rhyu ◽  
Kyung-Mox Cho ◽  
Jacques Duffy

2019 ◽  
Vol 300 ◽  
pp. 51-62 ◽  
Author(s):  
Mariyam I. Isa ◽  
Todd W. Fenton ◽  
Alexis C. Goots ◽  
Elena O. Watson ◽  
Patrick E. Vaughan ◽  
...  

Author(s):  
Mingzheng Yang ◽  
Yuanhang Chen ◽  
Frederick B. Growcock ◽  
Feifei Zhang

Abstract Drilling-induced lost circulation should be managed before and during fracture initiation rather than after they propagate to form large fractures and losses become uncontrollable. Recent studies indicated the potentially critical role of filtercake in strengthening the wellbore through formation of a pressure-isolating barrier, as well as plugging microfractures during fracture initiation. In this study, an experimental investigation was conducted to understand the role played by filtercake in the presence of lost circulation materials (LCMs). A modified permeability plugging apparatus (PPA) with slotted discs was used to simulate whole mud loss through fractures of known width behind filtercake. Cumulative fluid loss upon achieving a complete seal and the maximum sealing pressure were measured to evaluate the combined effects of filtercake and LCMs in preventing and reducing fluid losses. The effects of some filtercake properties (along with LCM type, concentration and particle size distribution) on filtercake rupture and fracture sealing were investigated. The results indicate that filtercake can accelerate fracture sealing and reduce total mud loss. Efficiently depositing filtercake while drilling can reduce the concentration of LCM that is required to plug and isolate incipient fractures.


Sign in / Sign up

Export Citation Format

Share Document