Blind Signature Protocol Based on Hidden Discrete Logarithm Problem Set in a Commutative Algebra

Author(s):  
M. H. Nguyen ◽  
D. N. Moldovyan ◽  
N. A. Moldovyan ◽  
M. Q. Le ◽  
G. L. Nguyen
2011 ◽  
Vol 282-283 ◽  
pp. 307-311
Author(s):  
Li Zhen Ma

Any one who knows the signer’s public key can verify the validity of a given signature in partially blind signature schemes. This verifying universality may be used by cheats if the signed message is sensitive or personal. To solve this problem, a new convertible user designating confirmer partially blind signature, in which only the designated confirmer (designated by the user) and the user can verify and confirm the validity of given signatures and convert given signatures into publicly verifiable ones, is proposed. Compared with Huang et al.’s scheme, the signature size is shortened about 25% and the computation quantity is reduced about 36% in the proposed scheme. Under random oracle model and intractability of Discrete Logarithm Problem the proposed scheme is provably secure.


2021 ◽  
Vol 37 (4) ◽  
pp. 495-509
Author(s):  
Minh N.H ◽  
Moldovyan D.N, et al.

A method for constructing a blind signature scheme based on a hidden discrete logarithm problem defined in finite non-commutative associative algebras is proposed. Blind signature protocols are constructed using four-dimensional and six-dimensional algebras defined over a ground finite field GF(p) and containing a global two-sided unit as an algebraic support. The basic properties of the used algebra, which determine the choice of protocol parameters, are described.


2013 ◽  
Vol 2 (1) ◽  
pp. 151-160
Author(s):  
E.H. El Kinani ◽  
Fatima Amounas

In recent years, Elliptic Curve Cryptography (ECC) has attracted the attention of researchers due to its robust mathematical structure and highest security compared to other existing algorithm like RSA. Our main objective in this work was to provide a novel blind signature scheme based on ECC. The security of the proposed method results from the infeasibility to solve the discrete logarithm over an elliptic curve. In this paper we introduce a proposed to development the blind signature scheme with more complexity as compared to the existing schemes. Keyword: Cryptography, Blind Signature, Elliptic Curve, Blindness, Untraceability.DOI: 10.18495/comengapp.21.151160


2011 ◽  
Vol 204-210 ◽  
pp. 1318-1321
Author(s):  
Xuan Wu Zhou ◽  
Yan Fu

Discrete logarithm problem is an important trapdoor function to design asymmetric cryptosystem, and some fast public key cryptosystems have been designed based on it. In the paper, we introduced fast asymmetric cryptosystem into the designing and analyzing of blind signature, and presented improved blind signature schemes based on ECC (Elliptic Curves Cryptosystem). The trapdoor function of the blind signatures is based on ECDLP (Elliptic Curves Discrete Logarithm Problem), and the algorithms of the scheme make full use of the superiority of ECC, such as high efficiency and short key length. The improved blind signature schemes can achieve the same security level with less storing space, smaller communication band-width and less overheads regarding software and hardware application. Furthermore, the algorithms in the schemes can be generalized into other public key cryptosystems based on discrete logarithm problem without any influence to efficiency or security.


2013 ◽  
Vol 734-737 ◽  
pp. 3194-3198
Author(s):  
Yi Wang

Combined with certificateless public key cryptography and proxy blind signature, an efficient certificateless proxy blind signature scheme is proposed. Its security is based on the discrete logarithm problem. Compared with the existed certificateless proxy blind signature scheme, because without bilinear pairing, it have higher efficiency. According to the different attacker and all kinds of attacks, the scheme is proved to be correct and security under the hardness of discrete logarithm problem in the finite field.


2013 ◽  
Vol 694-697 ◽  
pp. 2388-2393 ◽  
Author(s):  
Mei Na Zhang ◽  
Chun Bao Fu ◽  
Wei Fu

Two secure, high-efficient and feasible e-cash schemes are proposed in this thesis based on elliptic curve by using blind signature system, the schemes are completed by three protocols, namely, withdrawal protocol, payment protocol and deposit protocol. The two schemes make advantage of blind parameter, namely, after cash is received by Bank, cash is also hardly connected with the signature at some times. They are simple and easily realized. The elliptic curve cryptographic algorithm is adopted in the scheme, the length of the private key is short, and its efficiency and strength is significantly higher than e-cash scheme based on RSA signature proposed by D.Chaum. There is no effective solution to the elliptic curve discrete logarithm problem (ECDLP), therefore, the schemes are safe.


2005 ◽  
Vol 164 (3) ◽  
pp. 837-841 ◽  
Author(s):  
Cheng-Chi Lee ◽  
Min-Shiang Hwang ◽  
Wei-Pang Yang

Sign in / Sign up

Export Citation Format

Share Document