Structure and Analysis of Certificateless Proxy Blind Signature Scheme without Bilinear Pairing

2013 ◽  
Vol 734-737 ◽  
pp. 3194-3198
Author(s):  
Yi Wang

Combined with certificateless public key cryptography and proxy blind signature, an efficient certificateless proxy blind signature scheme is proposed. Its security is based on the discrete logarithm problem. Compared with the existed certificateless proxy blind signature scheme, because without bilinear pairing, it have higher efficiency. According to the different attacker and all kinds of attacks, the scheme is proved to be correct and security under the hardness of discrete logarithm problem in the finite field.

2021 ◽  
Vol 37 (4) ◽  
pp. 495-509
Author(s):  
Minh N.H ◽  
Moldovyan D.N, et al.

A method for constructing a blind signature scheme based on a hidden discrete logarithm problem defined in finite non-commutative associative algebras is proposed. Blind signature protocols are constructed using four-dimensional and six-dimensional algebras defined over a ground finite field GF(p) and containing a global two-sided unit as an algebraic support. The basic properties of the used algebra, which determine the choice of protocol parameters, are described.


2014 ◽  
Vol 86 (2) ◽  
pp. 1003-1011 ◽  
Author(s):  
GUOFAGN DONG ◽  
FEI GAO ◽  
WENBO SHI ◽  
PENG GONG

Recently, the certificateless public key cryptography (CLPKC) has been studied widely since it could solve both of the certificate management problem in traditional public key cryptography (TPKC) and the key escrow problem in the identity-based public key cryptography (ID-based PKC). To satisfy requirements of different applications, many certificateless blind signature (CLBS) schemes using bilinear pairing for the CLPKC setting have been proposed. However, the bilinear pairing operation is very complicated. Therefore, the performance of those CLBS schemes is not very satisfactory. To solve the problem, we propose an efficient CLBS scheme without bilinear pairing. Performance analysis shows that the proposed scheme could reduce costs of computation and storage. Security analysis shows the proposed scheme is provably secure against both of two types of adversaries.


2011 ◽  
Vol 282-283 ◽  
pp. 307-311
Author(s):  
Li Zhen Ma

Any one who knows the signer’s public key can verify the validity of a given signature in partially blind signature schemes. This verifying universality may be used by cheats if the signed message is sensitive or personal. To solve this problem, a new convertible user designating confirmer partially blind signature, in which only the designated confirmer (designated by the user) and the user can verify and confirm the validity of given signatures and convert given signatures into publicly verifiable ones, is proposed. Compared with Huang et al.’s scheme, the signature size is shortened about 25% and the computation quantity is reduced about 36% in the proposed scheme. Under random oracle model and intractability of Discrete Logarithm Problem the proposed scheme is provably secure.


2013 ◽  
Vol 457-458 ◽  
pp. 1262-1265
Author(s):  
Min Qin Chen ◽  
Qiao Yan Wen ◽  
Zheng Ping Jin ◽  
Hua Zhang

Based an identity-based signature scheme, we givea certificateless signature scheme. And then we propose a certificateless blind signature (CLBS) scheme in this paper. This schemeis more efficient than those of previous schemes by pre-computing the pairing e (P, P)=g. Based on CL-PKC, it eliminates theusing of certificates in the signature scheme with respect to thetraditional public key cryptography (PKC) and solves key escrowproblems in ID-based signature schemes. Meanwhile it retains themerits of BS schemes. The proposed CLBS scheme is existentialunforgeable in the random oracle model under the intractabilityof the q-Strong Diffie-Hellman problem.


2013 ◽  
Vol 2 (1) ◽  
pp. 151-160
Author(s):  
E.H. El Kinani ◽  
Fatima Amounas

In recent years, Elliptic Curve Cryptography (ECC) has attracted the attention of researchers due to its robust mathematical structure and highest security compared to other existing algorithm like RSA. Our main objective in this work was to provide a novel blind signature scheme based on ECC. The security of the proposed method results from the infeasibility to solve the discrete logarithm over an elliptic curve. In this paper we introduce a proposed to development the blind signature scheme with more complexity as compared to the existing schemes. Keyword: Cryptography, Blind Signature, Elliptic Curve, Blindness, Untraceability.DOI: 10.18495/comengapp.21.151160


2010 ◽  
Vol 20-23 ◽  
pp. 505-511
Author(s):  
Xuan Wu Zhou

Compared with symmetric cryptosystem, asymmetric cryptosystem has much superiority in many application cases. Yet, the computation in a public key cryptosystem is much more complex than symmetric cryptosystem. In the paper, we applied HCC (Hyper-elliptic Curves Cryptosystem) as a typical fast public key cryptosystem into the designing of efficient blind signature scheme and presented an improved blind signature with fast cryptography algorithms. By utilizing probabilistic blinding algorithm, the scheme renders effective protection for the secrecy of original user, the signature generator or outer adversaries can not attack the secret message via the blinded information with effective polynomial algorithms. The scheme avoids the relevance between different signatures and interim parameters from the same original user, thus it effectively prevents signature forgery and replay attack. As security analysis for the scheme, we presented similar blind signature without relevant improving algorithms based on discrete logarithm cryptosystem. The analysis and comparison with other schemes both justify the security, reliability and high efficiency of the improved blind signature scheme regarding software and hardware application environment.


2011 ◽  
Vol 204-210 ◽  
pp. 1318-1321
Author(s):  
Xuan Wu Zhou ◽  
Yan Fu

Discrete logarithm problem is an important trapdoor function to design asymmetric cryptosystem, and some fast public key cryptosystems have been designed based on it. In the paper, we introduced fast asymmetric cryptosystem into the designing and analyzing of blind signature, and presented improved blind signature schemes based on ECC (Elliptic Curves Cryptosystem). The trapdoor function of the blind signatures is based on ECDLP (Elliptic Curves Discrete Logarithm Problem), and the algorithms of the scheme make full use of the superiority of ECC, such as high efficiency and short key length. The improved blind signature schemes can achieve the same security level with less storing space, smaller communication band-width and less overheads regarding software and hardware application. Furthermore, the algorithms in the schemes can be generalized into other public key cryptosystems based on discrete logarithm problem without any influence to efficiency or security.


2017 ◽  
Vol 2017 ◽  
pp. 1-9 ◽  
Author(s):  
Yingying Zhang ◽  
Jiwen Zeng ◽  
Wei Li ◽  
Huilin Zhu

Ring signature is a kind of digital signature which can protect the identity of the signer. Certificateless public key cryptography not only overcomes key escrow problem but also does not lose some advantages of identity-based cryptography. Certificateless ring signature integrates ring signature with certificateless public key cryptography. In this paper, we propose an efficient certificateless ring signature; it has only three bilinear pairing operations in the verify algorithm. The scheme is proved to be unforgeable in the random oracle model.


2010 ◽  
Vol 439-440 ◽  
pp. 401-406
Author(s):  
Jun Zhang

Structured multi-signatures is a special multi-signature which multiple signer can sign the same message and it provided co-signers with different position have different authorization capability. There are lots of structured multi-signature schemes such as Harn’s scheme and Burmester’s scheme, etc. Though Harn’s scheme was relatively safer, yet this scheme was not safety enough because it was very easily aggressed by the forgery attack. This paper shows the scheme can not resist the forgery attack. Then the paper proposed a new structure multi-signature scheme based on the difficulty of the discrete logarithm problem with verifying signature parameter and signers’ public keys. By verifying public-key, the new scheme can resist lots of outsider attack and insider attack. The validity of the new scheme can be verified, and it is a secure structured multi-signature scheme.


Sign in / Sign up

Export Citation Format

Share Document