scholarly journals On the power of P systems with active membranes using weak non-elementary membrane division

Author(s):  
Zsolt Gazdag ◽  
Károly Hajagos ◽  
Szabolcs Iván

AbstractIt is known that polarizationless P systems with active membranes can solve $$\mathrm {PSPACE}$$ PSPACE -complete problems in polynomial time without using in-communication rules but using the classical (also called strong) non-elementary membrane division rules. In this paper, we show that this holds also when in-communication rules are allowed but strong non-elementary division rules are replaced with weak non-elementary division rules, a type of rule which is an extension of elementary membrane divisions to non-elementary membranes. Since it is known that without in-communication rules, these P systems can solve in polynomial time only problems in $$\mathrm {P}^{\text {NP}}$$ P NP , our result proves that these rules serve as a borderline between $$\mathrm {P}^{\text {NP}}$$ P NP and $$\mathrm {PSPACE}$$ PSPACE concerning the computational power of these P systems.

2019 ◽  
Vol 1 (4) ◽  
pp. 251-261 ◽  
Author(s):  
Zsolt Gazdag ◽  
Gábor Kolonits

AbstractAccording to the P conjecture by Gh. Păun, polarizationless P systems with active membranes cannot solve $${\mathbf {NP}}$$NP-complete problems in polynomial time. The conjecture is proved only in special cases yet. In this paper we consider the case where only elementary membrane division and dissolution rules are used and the initial membrane structure consists of one elementary membrane besides the skin membrane. We give a new approach based on the concept of object division polynomials introduced in this paper to simulate certain computations of these P systems. Moreover, we show how to compute efficiently the result of these computations using these polynomials.


Triangle ◽  
2018 ◽  
pp. 1
Author(s):  
Artiom Alhazov

It is known that the satisfiability problem (SAT) can be efficiently solved by a uniform family of P systems with active membranes that have two polarizations working in a maximally parallel way. We study P systems with active membranes without non-elementary membrane division, working in minimally parallel way. The main question we address is what number of polarizations is sufficient for an efficient computation depending on the types of rules used.In particular, we show that it is enough to have four polarizations, sequential evolution rules changing polarizations, polarizationless non-elementary membrane division rules and polarizationless rules of sending an object out. The same problem is solved with the standard evolution rules, rules of sending an object out and polarizationless non-elementary membrane division rules, with six polarizations. It is an open question whether these numbers are optimal.


Author(s):  
Antonio E. Porreca ◽  
Alberto Leporati ◽  
Giancarlo Mauri ◽  
Claudio Zandron

P systems with active membranes have the ability of solving computationally hard problems. In this paper, the authors prove that uniform families of P systems with active membranes operating in polynomial time can solve the whole class of PP decision problems, without using nonelementary membrane division or dissolution rules. This result also holds for families having a stricter uniformity condition than the usual one.


2011 ◽  
Vol 2 (3) ◽  
pp. 35-48 ◽  
Author(s):  
Antonio E. Porreca ◽  
Alberto Leporati ◽  
Giancarlo Mauri ◽  
Claudio Zandron

P systems with active membranes have the ability of solving computationally hard problems. In this paper, the authors prove that uniform families of P systems with active membranes operating in polynomial time can solve the whole class of PP decision problems, without using nonelementary membrane division or dissolution rules. This result also holds for families having a stricter uniformity condition than the usual one.


2018 ◽  
Vol 29 (5) ◽  
pp. 663-680 ◽  
Author(s):  
YUEGUO LUO ◽  
HAIJUN TAN ◽  
YING ZHANG ◽  
YUN JIANG

P systems with active membranes are a class of bioinspired computing models, where the rules are used in the non-deterministic maximally parallel manner. In this paper, first, a new variant of timed P systems with active membranes is proposed, where the application of rules can be regulated by promoters with only two polarizations. Next, we prove that any Turing computable set of numbers can be generated by such a P system in the time-free way. Moreover, we construct a uniform solution to the$\mathcal{SAT}$problem in the framework of such recognizer timed P systems in polynomial time, and the feasibility and effectiveness of the proposed system is demonstrated by an instance. Compared with the existing methods, the P systems constructed in our work require fewer necessary resources and RS-steps, which show that the solution is effective toNP-complete problem.


Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
David Orellana-Martín ◽  
Luis Valencia-Cabrera ◽  
Bosheng Song ◽  
Linqiang Pan ◽  
Mario J. Pérez-Jiménez

Over the last few years, a new methodology to address the P versus NP problem has been developed, based on searching for borderlines between the nonefficiency of computing models (only problems in class P can be solved in polynomial time) and the presumed efficiency (ability to solve NP-complete problems in polynomial time). These borderlines can be seen as frontiers of efficiency, which are crucial in this methodology. “Translating,” in some sense, an efficient solution in a presumably efficient model to an efficient solution in a nonefficient model would give an affirmative answer to problem P versus NP. In the framework of Membrane Computing, the key of this approach is to detect the syntactic or semantic ingredients that are needed to pass from a nonefficient class of membrane systems to a presumably efficient one. This paper deals with tissue P systems with communication rules of type symport/antiport allowing the evolution of the objects triggering the rules. In previous works, frontiers of efficiency were found in these kinds of membrane systems both with division rules and with separation rules. However, since they were not optimal, it is interesting to refine these frontiers. In this work, optimal frontiers of the efficiency are obtained in terms of the total number of objects involved in the communication rules used for that kind of membrane systems. These optimizations could be easier to translate, if possible, to efficient solutions in a nonefficient model.


Author(s):  
Artiom Alhazov ◽  
Liudmila Burtseva ◽  
Svetlana Cojocaru ◽  
Yurii Rogozhin

Sign in / Sign up

Export Citation Format

Share Document