scholarly journals Minimal Parallelism and Number of Membrane Polarizations

Triangle ◽  
2018 ◽  
pp. 1
Author(s):  
Artiom Alhazov

It is known that the satisfiability problem (SAT) can be efficiently solved by a uniform family of P systems with active membranes that have two polarizations working in a maximally parallel way. We study P systems with active membranes without non-elementary membrane division, working in minimally parallel way. The main question we address is what number of polarizations is sufficient for an efficient computation depending on the types of rules used.In particular, we show that it is enough to have four polarizations, sequential evolution rules changing polarizations, polarizationless non-elementary membrane division rules and polarizationless rules of sending an object out. The same problem is solved with the standard evolution rules, rules of sending an object out and polarizationless non-elementary membrane division rules, with six polarizations. It is an open question whether these numbers are optimal.

Author(s):  
Zsolt Gazdag ◽  
Károly Hajagos ◽  
Szabolcs Iván

AbstractIt is known that polarizationless P systems with active membranes can solve $$\mathrm {PSPACE}$$ PSPACE -complete problems in polynomial time without using in-communication rules but using the classical (also called strong) non-elementary membrane division rules. In this paper, we show that this holds also when in-communication rules are allowed but strong non-elementary division rules are replaced with weak non-elementary division rules, a type of rule which is an extension of elementary membrane divisions to non-elementary membranes. Since it is known that without in-communication rules, these P systems can solve in polynomial time only problems in $$\mathrm {P}^{\text {NP}}$$ P NP , our result proves that these rules serve as a borderline between $$\mathrm {P}^{\text {NP}}$$ P NP and $$\mathrm {PSPACE}$$ PSPACE concerning the computational power of these P systems.


2019 ◽  
Vol 1 (4) ◽  
pp. 251-261 ◽  
Author(s):  
Zsolt Gazdag ◽  
Gábor Kolonits

AbstractAccording to the P conjecture by Gh. Păun, polarizationless P systems with active membranes cannot solve $${\mathbf {NP}}$$NP-complete problems in polynomial time. The conjecture is proved only in special cases yet. In this paper we consider the case where only elementary membrane division and dissolution rules are used and the initial membrane structure consists of one elementary membrane besides the skin membrane. We give a new approach based on the concept of object division polynomials introduced in this paper to simulate certain computations of these P systems. Moreover, we show how to compute efficiently the result of these computations using these polynomials.


Author(s):  
Antonio E. Porreca ◽  
Alberto Leporati ◽  
Giancarlo Mauri ◽  
Claudio Zandron

P systems with active membranes have the ability of solving computationally hard problems. In this paper, the authors prove that uniform families of P systems with active membranes operating in polynomial time can solve the whole class of PP decision problems, without using nonelementary membrane division or dissolution rules. This result also holds for families having a stricter uniformity condition than the usual one.


2011 ◽  
Vol 2 (3) ◽  
pp. 35-48 ◽  
Author(s):  
Antonio E. Porreca ◽  
Alberto Leporati ◽  
Giancarlo Mauri ◽  
Claudio Zandron

P systems with active membranes have the ability of solving computationally hard problems. In this paper, the authors prove that uniform families of P systems with active membranes operating in polynomial time can solve the whole class of PP decision problems, without using nonelementary membrane division or dissolution rules. This result also holds for families having a stricter uniformity condition than the usual one.


2011 ◽  
Vol 22 (01) ◽  
pp. 65-73 ◽  
Author(s):  
ANTONIO E. PORRECA ◽  
ALBERTO LEPORATI ◽  
GIANCARLO MAURI ◽  
CLAUDIO ZANDRON

We prove that recognizer P systems with active membranes using polynomial space characterize the complexity class PSPACE. This result holds for both confluent and nonconfluent systems, and independently of the use of membrane division rules.


Author(s):  
Andrea Valsecchi ◽  
Antonio E. Porreca ◽  
Alberto Leporati ◽  
Giancarlo Mauri ◽  
Claudio Zandron

Author(s):  
Miguel A. Gutiérrez-Naranjo ◽  
Mario J. Pérez-Jiménez ◽  
Agustín Riscos-Núñez ◽  
Francisco J. Romero-Campero
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document