scholarly journals New Instances for Maximum Weight Independent Set From a Vehicle Routing Application

2021 ◽  
Vol 2 (4) ◽  
Author(s):  
Yuanyuan Dong ◽  
Andrew V. Goldberg ◽  
Alexander Noe ◽  
Nikos Parotsidis ◽  
Mauricio G. C. Resende ◽  
...  

AbstractWe present a set of new instances of the maximum weight independent set problem. These instances are derived from a real-world vehicle routing problem and are challenging to solve in part because of their large size. We present instances with up to 881 thousand nodes and 383 million edges.

1970 ◽  
Vol 24 (4) ◽  
pp. 343-351 ◽  
Author(s):  
Filip Taner ◽  
Ante Galić ◽  
Tonči Carić

This paper addresses the Vehicle Routing Problem with Time Windows (VRPTW) and shows that implementing algorithms for solving various instances of VRPs can significantly reduce transportation costs that occur during the delivery process. Two metaheuristic algorithms were developed for solving VRPTW: Simulated Annealing and Iterated Local Search. Both algorithms generate initial feasible solution using constructive heuristics and use operators and various strategies for an iterative improvement. The algorithms were tested on Solomon’s benchmark problems and real world vehicle routing problems with time windows. In total, 44 real world problems were optimized in the case study using described algorithms. Obtained results showed that the same distribution task can be accomplished with savings up to 40% in the total travelled distance and that manually constructed routes are very ineffective.


2009 ◽  
Vol 60 (7) ◽  
pp. 934-943 ◽  
Author(s):  
A Ostertag ◽  
K F Doerner ◽  
R F Hartl ◽  
E D Taillard ◽  
P Waelti

2017 ◽  
Vol 60 ◽  
pp. 19-25 ◽  
Author(s):  
J. Mark Keil ◽  
Joseph S.B. Mitchell ◽  
Dinabandhu Pradhan ◽  
Martin Vatshelle

2014 ◽  
Vol 238 (1) ◽  
pp. 104-113 ◽  
Author(s):  
A.D. López-Sánchez ◽  
A.G. Hernández-Díaz ◽  
D. Vigo ◽  
R. Caballero ◽  
J. Molina

Author(s):  
Jorge Rodas ◽  
Daniel Azpeitia ◽  
Alberto Ochoa-Zezzatti ◽  
Raymundo Camarena ◽  
Tania Olivier

The aim of this chapter is about the inclusion of real world scenarios, viewed as a Generalized Vehicle Routing Problem (GVRP) model problem, and treated by bio inspired algorithms in order to find optimum routing of product delivery. GVRP is the generalization of the classical Vehicle Routing Problem (VRP) that is well known NP-hard as generalized combinatorial optimization problem with a number of real world applications and a variety of different versions. Due to its complexity, large instances of VRP are hard to solve using exact methods. Thus a solution by a soft computing technique is desired. From a methodological standpoint, the chapter includes four bio inspired algorithms, ant colony optimization and firefly. From an application standpoint, several factors of the generalized vehicle routing are considered from a real world scenario.


2020 ◽  
Vol 32 (1) ◽  
pp. 25-38 ◽  
Author(s):  
Tonči Carić ◽  
Juraj Fosin

This paper provides a framework for solving the Time Dependent Vehicle Routing Problem (TDVRP) by using historical data. The data are used to predict travel times during certain times of the day and derive zones of congestion that can be used by optimization algorithms. A combination of well-known algorithms was adapted to the time dependent setting and used to solve the real-world problems. The adapted algorithm outperforms the best-known results for TDVRP benchmarks. The proposed framework was applied to a real-world problem and results show a reduction in time delays in serving customers compared to the time independent case.


Sign in / Sign up

Export Citation Format

Share Document