constructive heuristics
Recently Published Documents


TOTAL DOCUMENTS

68
(FIVE YEARS 29)

H-INDEX

12
(FIVE YEARS 4)

2021 ◽  
Vol 1 (1) ◽  
Author(s):  
Hanfu Wang ◽  
Weidong Chen

AbstractWe study the Transport and Pick Robots Task Scheduling (TPS) problem, in which two teams of specialized robots, transport robots and pick robots, collaborate to execute multi-station order fulfillment tasks in logistic environments. The objective is to plan a collective time-extended task schedule with the minimization of makespan. However, for this recently formulated problem, it is still unclear how to obtain satisfying results efficiently. In this research, we design several constructive heuristics to solve this problem based on the introduced sequence models. Theoretically, we give time complexity analysis or feasibility guarantees of these heuristics; empirically, we evaluate the makespan performance criteria and computation time on designed dataset. Computational results demonstrate that coupled append heuristic works better for the most cases within reasonable computation time. Coupled heuristics work better than decoupled heuristics prominently on instances with relative few pick robot numbers and large work zones. The law of diminishing marginal utility is also observed concerning the overall system performance and different transport-pick robot numbers.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Kennedy Anderson Guimarães de Araújo ◽  
Tiberius Oliveira e Bonates ◽  
Bruno de Athayde Prata

Purpose This study aims to address the hybrid open shop problem (HOSP) with respect to the minimization of the overall finishing time or makespan. In the HOSP, we have to process n jobs in stages without preemption. Each job must be processed once in every stage, there is a set of mk identical machines in stage k and the production flow is immaterial. Design/methodology/approach Computational experiments carried out on a set of randomly generated instances showed that the minimal idleness heuristic (MIH) priority rule outperforms the longest processing time (LPT) rule proposed in the literature and the other proposed constructive methods on most instances. Findings The proposed mathematical model outperformed the existing model in the literature with respect to computing time, for small-sized instances, and solution quality within a time limit, for medium- and large-sized instances. The authors’ hybrid iterated local search (ILS) improved the solutions of the MIH rule, drastically outperforming the models on large-sized instances with respect to solution quality. Originality/value The authors formalize the HOSP, as well as argue its NP-hardness, and propose a mixed integer linear programming model to solve it. The authors propose several priority rules – constructive heuristics based on priority measures – for finding feasible solutions for the problem, consisting of adaptations of classical priority rules for scheduling problems. The authors also propose a hybrid ILS for improving the priority rules solutions.


2021 ◽  
pp. 1109-1115
Author(s):  
Brahma Datta Shukla, Pragya Singh Tomar

The study proposes an evolutionary algorithm-based improvement heuristic for the permutation flow-shop problem. The method uses a constructive heuristic to arrive at a good first solution. The GA-based improvement heuristic is used in conjunction with CDS, Gupta's algorithm, and Palmer's Slope Index, which are all well-known constructive heuristics. The method is put to the test on a series of ten issues that vary from 4 to 25 tasks and 4 to 30 machines. The outcomes are also compared to some of the most well-known lower-bound options


2021 ◽  
Vol 12 (4) ◽  
pp. 415-426 ◽  
Author(s):  
Tuane Tonani Yamada ◽  
Marcelo Seido Nagano ◽  
Hugo Hissashi Miyata

Efficient business organizations must balance quality, cost, and time constraints in competitive environments. Reflecting the complexity of this task, we consider manufacturing systems including several stages of production chains requiring time measurement. When production scheduling is not prioritized in such enterprises, several negative effects may occur. A corporation may suffer financial penalties as well as negative brand exposure, and thus may find its credibility challenged. Therefore, in this study, we propose constructive methods to minimize a total tardiness criterion, considering preventative maintenance constraints to reflect the reality of industrial practice, focusing on a no-wait flowshop environment in which jobs are successively processed without operational interruptions. In addition to proposing constructive methods to solve the no-wait flowshop production scheduling problem, a metaheuristic is presented as an approach to improve results obtained by constructive methods. Computational experiments were designed and performed to compare several production scheduling algorithms. Among various constructive heuristics considered, an algorithm called HENLL using an insertion logic showed the best performance. The proposed metaheuristic is based on the iterated greedy (IG) search method, and the results obtained demonstrated significant improvement compared to the heuristics alone. It is expected that this study may be used by production planning and control (PPC) professionals to apply the proposed method to schedule production more efficiently. We show that the proposed method successfully presented a better solution in relation to total tardiness, considering the above mentioned environment.


Sign in / Sign up

Export Citation Format

Share Document