Organization of chlorophyll-protein complexes of Photosystem I in Chlamydomonas reinhardii

1983 ◽  
Vol 722 (3) ◽  
pp. 498-507 ◽  
Author(s):  
Dvorah Ish-Shalom ◽  
Itzhak Ohad
2009 ◽  
Vol 106 (37) ◽  
pp. 15979-15984 ◽  
Author(s):  
Pierre Cardol ◽  
Jean Alric ◽  
Jacqueline Girard-Bascou ◽  
Fabrice Franck ◽  
Francis-André Wollman ◽  
...  

State transitions correspond to a major regulation process for photosynthesis, whereby chlorophyll protein complexes responsible for light harvesting migrate between photosystem II and photosystem I in response to changes in the redox poise of the intersystem electron carriers. Here we disclose their physiological significance in Chlamydomonas reinhardtii using a genetic approach. Using single and double mutants defective for state transitions and/or mitochondrial respiration, we show that photosynthetic growth, and therefore biomass production, critically depends on state transitions in respiratory-defective conditions. When extra ATP cannot be provided by respiration, enhanced photosystem I turnover elicited by transition to state 2 is required for photosynthetic activity. Concomitant impairment of state transitions and respiration decreases the overall yield of photosynthesis, ultimately leading to reduced fitness. We thus provide experimental evidence that the combined energetic contributions of state transitions and respiration are required for efficient carbon assimilation in this alga.


1992 ◽  
Vol 119 (2) ◽  
pp. 325-335 ◽  
Author(s):  
R Barbato ◽  
G Friso ◽  
F Rigoni ◽  
F Dalla Vecchia ◽  
G M Giacometti

The structural and topological stability of thylakoid components under photoinhibitory conditions (4,500 microE.m-2.s-1 white light) was studied on Mn depleted thylakoids isolated from spinach leaves. After various exposures to photoinhibitory light, the chlorophyll-protein complexes of both photosystems I and II were separated by sucrose gradient centrifugation and analysed by Western blotting, using a set of polyclonals raised against various apoproteins of the photosynthetic apparatus. A series of events occurring during donor side photoinhibition are described for photosystem II, including: (a) lowering of the oligomerization state of the photosystem II core; (b) cleavage of 32-kD protein D1 at specific sites; (c) dissociation of chlorophyll-protein CP43 from the photosystem II core; and (d) migration of damaged photosystem II components from the grana to the stroma lamellae. A tentative scheme for the succession of these events is illustrated. Some effects of photoinhibition on photosystem I are also reported involving dissociation of antenna chlorophyll-proteins LHCI from the photosystem I reaction center.


Sign in / Sign up

Export Citation Format

Share Document