photosystem i
Recently Published Documents


TOTAL DOCUMENTS

2935
(FIVE YEARS 279)

H-INDEX

105
(FIVE YEARS 12)

Plants ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 195
Author(s):  
Qi Shi ◽  
Hu Sun ◽  
Stefan Timm ◽  
Shibao Zhang ◽  
Wei Huang

Fluctuating light (FL) is a typical natural light stress that can cause photodamage to photosystem I (PSI). However, the effect of growth light on FL-induced PSI photoinhibition remains controversial. Plants grown under high light enhance photorespiration to sustain photosynthesis, but the contribution of photorespiration to PSI photoprotection under FL is largely unknown. In this study, we examined the photosynthetic performance under FL in tomato (Lycopersicon esculentum) plants grown under high light (HL-plants) and moderate light (ML-plants). After an abrupt increase in illumination, the over-reduction of PSI was lowered in HL-plants, resulting in a lower FL-induced PSI photoinhibition. HL-plants displayed higher capacities for CO2 fixation and photorespiration than ML-plants. Within the first 60 s after transition from low to high light, PSII electron transport was much higher in HL-plants, but the gross CO2 assimilation rate showed no significant difference between them. Therefore, upon a sudden increase in illumination, the difference in PSII electron transport between HL- and ML-plants was not attributed to the Calvin–Benson cycle but was caused by the change in photorespiration. These results indicated that the higher photorespiration in HL-plants enhanced the PSI electron sink downstream under FL, which mitigated the over-reduction of PSI and thus alleviated PSI photoinhibition under FL. Taking together, we here for the first time propose that photorespiration acts as a safety valve for PSI photoprotection under FL.


Cells ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 252
Author(s):  
Zhi-Lan Zeng ◽  
Hu Sun ◽  
Xiao-Qian Wang ◽  
Shi-Bao Zhang ◽  
Wei Huang

Fluctuating light is a typical light condition in nature and can cause selective photodamage to photosystem I (PSI). The sensitivity of PSI to fluctuating light is influenced by the amplitude of low/high light intensity. Tobacco mature leaves are tended to be horizontal to maximize the light absorption and photosynthesis, but young leaves are usually vertical to diminish the light absorption. Therefore, we tested the hypothesis that such regulation of the leaf angle in young leaves might protect PSI against photoinhibition under fluctuating light. We found that, upon a sudden increase in illumination, PSI was over-reduced in extreme young leaves but was oxidized in mature leaves. After fluctuating light treatment, such PSI over-reduction aggravated PSI photoinhibition in young leaves. Furthermore, the leaf angle was tightly correlated to the extent of PSI photoinhibition induced by fluctuating light. Therefore, vertical young leaves are more susceptible to PSI photoinhibition than horizontal mature leaves when exposed to the same fluctuating light. In young leaves, the vertical leaf angle decreased the light absorption and thus lowered the amplitude of low/high light intensity. Therefore, the regulation of the leaf angle was found for the first time as an important strategy used by young leaves to protect PSI against photoinhibition under fluctuating light. To our knowledge, we show here new insight into the photoprotection for PSI under fluctuating light in nature.


2022 ◽  
Vol 23 (2) ◽  
pp. 734
Author(s):  
Jinyang Weng ◽  
Asad Rehman ◽  
Pengli Li ◽  
Liying Chang ◽  
Yidong Zhang ◽  
...  

Due to the frequent occurrence of continuous high temperatures and heavy rain in summer, extremely high-temperature and high-humidity environments occur, which seriously harms crop growth. High temperature and humidity (HTH) stress have become the main environmental factors of combined stress in summer. The responses of morphological indexes, physiological and biochemical indexes, gas exchange parameters, and chlorophyll fluorescence parameters were measured and combined with chloroplast ultrastructure and transcriptome sequencing to analyze the reasons for the difference in tolerance to HTH stress in HTH-sensitive ‘JIN TAI LANG’ and HTH-tolerant ‘JIN DI’ varieties. The results showed that with the extension of stress time, the superoxide dismutase (SOD), peroxidase (POD), and ascorbate peroxidase (APX) activities of the two melon varieties increased rapidly, the leaf water content increased, and the tolerant varieties showed stronger antioxidant capacity. Among the sensitive cultivars, Pn, Fv/Fm, photosystem II, and photosystem I chlorophyll fluorescence parameters were severely inhibited and decreased rapidly with the extension of stress time, while the HTH-tolerant cultivars slightly decreased. The cell membrane and chloroplast damage in sensitive cultivars were more severe, and Lhca1, Lhca3, and Lhca4 proteins in photosystem II and Lhcb1-Lhcb6 proteins in photosystem I were inhibited compared with those in the tolerant cultivar. These conclusions may be the main reason for the different tolerances of the two cultivars. These findings will provide new insights into the response of other crops to HTH stress and also provide a basis for future research on the mechanism of HTH resistance in melon.


2022 ◽  
Author(s):  
Koji Kato ◽  
Ryo Nagao ◽  
Yoshifumi Ueno ◽  
Makio Yokono ◽  
Takehiro Suzuki ◽  
...  

Photosystem I (PSI) contributes to light-conversion reactions; however, its oligomerization state is variable among photosynthetic organisms. Herein we present a 3.8-Å resolution cryo-electron microscopic structure of tetrameric PSI isolated from a glaucophyte alga Cyanophora paradoxa. The PSI tetramer is organized in a dimer of dimers form with a C2 symmetry. Different from cyanobacterial PSI tetramer, two of the four monomers are rotated around 90°, resulting in a totally different pattern of monomer-monomer interactions. Excitation-energy transfer among chlorophylls differs significantly between Cyanophora and cyanobacterial PSI tetramers. These structural and spectroscopic features reveal characteristic interactions and energy transfer in the Cyanophora PSI tetramer, thus offering an attractive idea for the changes of PSI from prokaryotes to eukaryotes.


Biology ◽  
2022 ◽  
Vol 11 (1) ◽  
pp. 60
Author(s):  
Lyubov Yudina ◽  
Ekaterina Sukhova ◽  
Maxim Mudrilov ◽  
Vladimir Nerush ◽  
Anna Pecherina ◽  
...  

LED illumination can have a narrow spectral band; its intensity and time regime are regulated within a wide range. These characteristics are the potential basis for the use of a combination of LEDs for plant cultivation because light is the energy source that is used by plants as well as the regulator of photosynthesis, and the regulator of other physiological processes (e.g., plant development), and can cause plant damage under certain stress conditions. As a result, analyzing the influence of light spectra on physiological and growth characteristics during cultivation of different plant species is an important problem. In the present work, we investigated the influence of two variants of LED illumination (red light at an increased intensity, the “red” variant, and blue light at an increased intensity, the “blue” variant) on the parameters of photosynthetic dark and light reactions, respiration rate, leaf reflectance indices, and biomass, among other factors in lettuce (Lactuca sativa L.). The same light intensity (about 180 µmol m−2s−1) was used in both variants. It was shown that the blue illumination variant increased the dark respiration rate (35–130%) and cyclic electron flow around photosystem I (18–26% at the maximal intensity of the actinic light) in comparison to the red variant; the effects were dependent on the duration of cultivation. In contrast, the blue variant decreased the rate of the photosynthetic linear electron flow (13–26%) and various plant growth parameters, such as final biomass (about 40%). Some reflectance indices (e.g., the Zarco-Tejada and Miller Index, an index that is related to the core sizes and light-harvesting complex of photosystem I), were also strongly dependent on the illumination variant. Thus, our results show that the red illumination variant contributes a great deal to lettuce growth; in contrast, the blue variant contributes to stress changes, including the activation of cyclic electron flow around photosystem I.


Photochem ◽  
2021 ◽  
Vol 2 (1) ◽  
pp. 5-8
Author(s):  
Michael Moustakas

Light energy, absorbed as photons by chlorophylls and other pigment molecules consisting of light-harvesting complexes (LHCs), is transferred to the reaction centres (RCs), where, through charge separation, electrons flow from photosystem II (PSII) through cytochrome b6f and diffusible electron carriers to photosystem I (PSI) [...]


2021 ◽  
Author(s):  
Hamed Sattari Vayghan ◽  
Wojciech J Nawrocki ◽  
Christo Schiphorst ◽  
Dimitri Tolleter ◽  
Hu Chen ◽  
...  

Light absorbed by chlorophylls of photosystem II and I drives oxygenic photosynthesis. Light-harvesting complexes increase the absorption cross-section of these photosystems. Furthermore, these complexes play a central role in photoprotection by dissipating the excess of absorbed light energy in an inducible and regulated fashion. In higher plants, the main light-harvesting complex is the trimeric LHCII. In this work, we used CRISPR/Cas9 to knockout the five genes encoding LHCB1, which is the major component of the trimeric LHCII. In absence of LHCB1 the accumulation of the other LHCII isoforms was only slightly increased, thereby resulting in chlorophyll loss leading to a pale green phenotype and growth delay. Photosystem II absorption cross-section was smaller while photosystem I absorption cross-section was unaffected. This altered the chlorophyll repartition between the two photosystems, favoring photosystem I excitation. The equilibrium of the photosynthetic electron transport was partially maintained by a lower photosystem I over photosystem II reaction center ratio and by the dephosphorylation of LHCII and photosystem II. Loss of LHCB1 altered the thylakoid structure, with less membrane layers per grana stack and reduced grana width. Stable LHCB1 knock out lines allow characterizing the role of this protein in light harvesting and acclimation and pave the way for future in vivo mutational analyses of LHCII.


2021 ◽  
Author(s):  
Xiaodong Su ◽  
Duanfang Cao ◽  
Xiaowei Pan ◽  
Lifang Shi ◽  
Zhenfeng Liu ◽  
...  

Cyclic electron transport/flow (CET/CEF) in chloroplasts is a regulatory mechanism crucial for optimization of plant photosynthetic efficiency. CET is catalyzed by a membrane-embedded NAD(P)H dehydrogenase-like (NDH) complex containing at least 29 protein subunits and associating with photosystem I (PSI) to form the NDH-PSI supercomplex. Here we report the 3.9 angstrom resolution structure of Arabidopsis thaliana NDH-PSI (AtNDH-PSI) supercomplex. We have constructed structural models for 26 AtNDH subunits, among which 11 subunits are unique to chloroplast and stabilize the core part of NDH complex. In the supercomplex, one NDH can bind up to two PSI-LHCI complexes at both sides of its membrane arm. Two minor LHCIs, Lhca5 and Lhca6, each present in one PSI-LHCI, interact with NDH and contribute to the supercomplex formation and stabilization. Our results showed structural details of the supercomplex assembly and provide molecular basis for further investigation of the regulatory mechanism of CEF in plants.


Biomolecules ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1839
Author(s):  
Kezhen Qin ◽  
Alisdair R. Fernie ◽  
Youjun Zhang

Increasing evidence has revealed that the enzymes of several biological pathways assemble into larger supramolecular structures called super-complexes. Indeed, those such as association of the mitochondrial respiratory chain complexes play an essential role in respiratory activity and promote metabolic fitness. Dynamically assembled super-complexes are able to alternate between participating in large complexes and existing in a free state. However, the functional significance of the super-complexes is not entirely clear. It has been proposed that the organization of respiratory enzymes into super-complexes could reduce oxidative damage and increase metabolism efficiency. There are several protein complexes that have been revealed in the plant chloroplast, yet little research has been focused on the formation of super-complexes in this organelle. The photosystem I and light-harvesting complex I super-complex’s structure suggests that energy absorbed by light-harvesting complex I could be efficiently transferred to the PSI core by avoiding concentration quenching. Here, we will discuss in detail core complexes of photosystem I and II, the chloroplast ATPase the chloroplast electron transport chain, the Calvin–Benson cycle and a plastid localized purinosome. In addition, we will also describe the methods to identify these complexes.


2021 ◽  
Vol 27 (4) ◽  
pp. 556-565
Author(s):  
Jadson Bonini Zampirollo ◽  
Clodoaldo Leites Pinheiro ◽  
Vinícius Fonseca dos Santos ◽  
Priscila Conceição Souza Braga ◽  
João Paulo Rodrigues Martins ◽  
...  

Abstract The tolerance to low water availability is a decisive factor for growth and survival of orchids in their natural environment. The objective of this study was to characterize the photochemical traits of two epiphytic orchids (Cattleya warneri and Miltonia spectabilis) under water deficit (WD). Chlorophyll a fluorescence signals were recorded from young and fully expanded leaves of 5 plants/species after dark-adaption for 60 minutes, between 6-9 a.m. after 0, 30, 60, and 90 days of WD, using a Handy-PEA fluorometer (Hansatech, UK). Increases of O-J and J-I phases and L and K-bands and decreases of I-P phase were observed after 30 days of WD, especially in C. warneri. Decreases in the capacity to photochemically reduce quinone A (QA) and the kinetic properties required for redox reactions of the plastoquinone pool, the loss of energetic connectivity between units of PSII, inactivation of the oxygen evolution complex, and decrease of the overall rate of reducing the electron acceptor pool of photosystem I were observed in M. spectabilis, a more tolerant species. The greater ability of this species to maintain higher relative water content (RWC) in photosynthetic tissues allows greater photochemical activity.


Sign in / Sign up

Export Citation Format

Share Document