Selective retrograde transport of d-aspartate in spinal interneurons and cortical neurons of rats

1982 ◽  
Vol 236 (1) ◽  
pp. 143-155 ◽  
Author(s):  
Aldo Rustioni ◽  
Michel Cuenod
2020 ◽  
pp. jbc.RA120.015997
Author(s):  
Mitsuhiro Nakato ◽  
Naoko Shiranaga ◽  
Maiko Tomioka ◽  
Hitomi Watanabe ◽  
Junko Kurisu ◽  
...  

ATP-binding cassette subfamily A member 13 (ABCA13) is predicted to be the largest ABC protein, consisting of 5,058 amino acids and a long N-terminal region. Mutations in the ABCA13 gene were reported to increase the susceptibility to schizophrenia, bipolar disorder and major depression. However, little is known about the molecular functions of ABCA13 or how they associate with psychiatric disorders. Here, we examined the biochemical activity of ABCA13 using HEK293 cells transfected with mouse ABCA13. The expression of ABCA13 induced the internalization of cholesterol and gangliosides from the plasma membrane to intracellular vesicles. Cholesterol internalization by ABCA13 required the long N-terminal region and ATP hydrolysis. To examine the physiological roles of ABCA13, we generated Abca13 KO mice using CRISPR/Cas and found that these mice exhibited deficits of prepulse inhibition. Vesicular cholesterol accumulation and synaptic vesicle endocytosis were impaired in primary cultures of Abca13 KO cortical neurons. Furthermore, mutations in ABCA13 gene associated with psychiatric disorders disrupted the protein’s subcellular localization  and impaired cholesterol trafficking. These findings suggest that ABCA13 accelerates cholesterol internalization by endocytic retrograde transport in neurons and that loss-of-this function is associated with the pathophysiology of psychiatric disorders.


Two major properties of neurons in the kitten’s visual cortex, binocularity and orientation selectivity, are present when the eyes first open, and therefore can be established by genetic instructions alone. However, both of these attributes require visual experience for their maintenance or strengthening; and both can be rapidly modified by unusual kinds of experience. Alternating sequences of cells dominated by one eye, then the other, can be recorded during penetrations through the cortex in binocularly deprived kittens, typical of the ‘ocular dominance columns’ of the normal adult cat. However, if one eye is deprived by lid-suture, the entire visual cortex becomes strongly dominated by the open eye. Experiments in which each eye saw separately through a transparent neutral density filter or a translucent diffuser showed that this phenomenon is caused not by the reduction in retinal illumination, but by the abolition of contrast in the deprived eye. A study of the retrograde transport of horseradish peroxidase from the visual cortex to the principal laminae of the lateral geniculate nucleus suggested that monocular deprivation from early in life may lead to a gross reduction in the distribution of afferent fibres from the deprived laminae. Previous experiments have found that if a kitten is exposed only to contours of one orientation, its cortical neurons become modified in their distribution of preferred orientations. This phenomenon was re-confirmed in a new study using a rigorously objective method of analysis.


Author(s):  
Alexi Nott ◽  
James D. Robinson ◽  
Antonella Riccio

Sign in / Sign up

Export Citation Format

Share Document