nerve growth
Recently Published Documents


TOTAL DOCUMENTS

8169
(FIVE YEARS 506)

H-INDEX

207
(FIVE YEARS 9)

2022 ◽  
Vol 8 ◽  
Author(s):  
Jamie L. Stewart ◽  
Liying Gao ◽  
Jodi A. Flaws ◽  
Vitor R. G. Mercadante ◽  
Nicholas W. Dias ◽  
...  

Nerve growth factor-β (NGF) is critical for ovulation in the mammalian ovary and is luteotrophic when administered systemically to camelids and cattle. This study aimed to assess the direct effects of purified bovine NGF on steroidogenesis and angiogenic markers in the bovine pre-ovulatory follicle. Holstein heifers (n = 2) were synchronized with a standard protocol, and heifers with a preovulatory follicle (≥ 12 mm) had the ovary containing the dominant follicle removed via colpotomy. Pre-ovulatory follicles were dissected into 24 pieces containing theca and granulosa cells that were randomly allocated into culture media supplemented with either purified bovine NGF (100 ng/mL) or untreated (control) for 72 h. The supernatant media was harvested for quantification of progesterone, testosterone, and estradiol concentrations, whereas explants were subjected to mRNA analyses to assess expression of steroidogenic and angiogenic markers. Treatment of follicle wall pieces with NGF upregulated gene expression of steroidogenic enzyme HDS17B (P = 0.04) and increased testosterone production (P < 0.01). However, NGF treatment did not alter production of progesterone (P = 0.81) or estradiol (P = 0.14). Consistently, gene expression of steroidogenic enzymes responsible for producing these hormones (STAR, CYP11A1, HSD3B, CYP17A1, CYP19A1) were unaffected by NGF treatment (P ≥ 0.31). Treatment with NGF downregulated gene expression of the angiogenic enzyme FGF2 (P = 0.02) but did not alter PGES (P = 0.63), VEGFA (P = 0.44), and ESR1 (P = 0.77). Collectively, these results demonstrate that NGF from seminal plasma may interact directly on the theca and granulosa cells of the bovine pre-ovulatory follicle to stimulate testosterone production, which may be secondary to theca cell proliferation. Additionally, decreased FGF2 expression in NGF-treated follicle wall cells suggests hastened onset of follicle wall cellular remodeling that occurs during early luteal development.


2022 ◽  
Vol 17 (5) ◽  
pp. 1146
Author(s):  
Peng Hao ◽  
Zhao-Yang Yang ◽  
Xiao-Guang Li ◽  
Fa-Dong Liu ◽  
Hong-Mei Duan ◽  
...  

2021 ◽  
Vol 2021 ◽  
pp. 1-6
Author(s):  
Zhiyong Liu ◽  
Jing Liu ◽  
Dan Hu ◽  
Juanjuan Du ◽  
Donglu Liu ◽  
...  

Objective. Radiation-induced heart disease (RIHD) is a common sequela of thoracic irradiation. At the same time, nerve remodeling is involved in the progression of heart disease. However, the activation of the nerve remodeling related genes in radiation-induced heart disease is still lacking. Methods. In this study, C57BL/J mice was anesthetized by intraperitoneal injection with pentobarbital sodium (2%, 40 mg/kg), and radiation was delivered using a cobalt-60 (60Co) teletherapy unit (Cirus). When the mice were anesthetized, none of them showed the signs of peritonitis, pain, or discomfort. The mice hearts were exposed to a γ-radiation field of 5   mm × 5   mm . The total dose of γ-radiation was 3 Gy/day for each animal for 5 consecutive days. The mice were executed by severed neck, and its limbs were weak. Quantitative Polymerase Chain Reaction (qPCR) and immunohistochemistry were used to explore the possible mechanism of arrhythmia in patients with RIHD. Results. Our results demonstrated that Growth-Associated Protein 43 (GAP43) was increased significantly after radioactive heart injury compared with the control group. Moreover, the protein expression of Tyrosine hydroxylase (TH) and Choline acetyl-transferase (CHAT) was significantly decreased compared with the control group and gradually increased with time rend. The nerve growth factor (NGF) was remarkably increased after radiation-induced heart injury compared with the control group. Immunohistochemistry results indicated that the nerve growth factors GAP43 and NGF were significantly increased after radiation-induced heart injury. Conclusions. Chest radiotherapy could activate the neural modeling related genes in RIHD. This may provide a new treatment plan for the future treatment of heart problems caused by chest radiotherapy.


Cells ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 16
Author(s):  
Sonia Do Carmo ◽  
Benjamin Kannel ◽  
A. Claudio Cuello

The cause of the loss of basal forebrain cholinergic neurons (BFCNs) and their terminal synapses in the cerebral cortex and hippocampus in Alzheimer’s disease (AD) has provoked a decades-long controversy. The cholinergic phenotype of this neuronal system, involved in numerous cognitive mechanisms, is tightly dependent on the target-derived nerve growth factor (NGF). Consequently, the loss of BFCNs cholinergic phenotype in AD was initially suspected to be due to an NGF trophic failure. However, in AD there is a normal NGF synthesis and abundance of the NGF precursor (proNGF), therefore the NGF trophic failure hypothesis for the atrophy of BCNs was abandoned. In this review, we discuss the history of NGF-dependency of BFCNs and the atrophy of these neurons in Alzheimer’s disease (AD). Further to it, we propose that trophic factor failure explains the BFCNs atrophy in AD. We discuss evidence of the occurrence of a brain NGF metabolic pathway, the dysregulation of which, in AD explains the severe deficiency of NGF trophic support for the maintenance of BFCNs cholinergic phenotype. Finally, we revise recent evidence that the NGF metabolic dysregulation in AD pathology starts at preclinical stages. We also propose that the alteration of NGF metabolism-related markers in body fluids might assist in the AD preclinical diagnosis.


2021 ◽  
pp. 223-260
Author(s):  
Ricardo Gobato ◽  
Abhijit Mitra

The cell cycle of such a subject has been thoroughly studied, yet here we are examining for the second time that we have entered a new phase; Biology always has new insights to show us. This data was amazing. This map is based on this beautiful circular pattern that we have identified as all the different stages of the cell cycle. Have a disease. When Placer and colleagues used the ccAF tool to analyze cell data for glioma tumors, we found that tumor cells were often in the G0 or G1 nerve growth state. With tumor aggression, fewer cells remain at rest in the G0 nerve state. This means that more cells are growing and growing in the tumor. Keywords: Cancer; Cells; Tissues; Tumors; Prevention; Prognosis; Diagnosis; Imaging; Screening, Treatment; Management


2021 ◽  
Author(s):  
Yu Wang ◽  
Feng Jia ◽  
Yong Lin

Abstract Several transport vectors, including nanoparticles, have been reported to be used for the delivery of therapeutic medicines crossing the impermeable blood-brain barrier (BBB) to treat the diseases in the central nerve system (CNS), such as traumatic brain injury (TBI). Poly(n-butyl-2-cyanoacrylate) (PBCA) nanoparticles, made from biocompatible material, are regarded as a better potential delivery tool than others such as gold nanoparticles due to their degradability in vivo. However, little is known whether PBCA nanoparticles can be used to deliver neurotrophic factors into the brain to treat TBI. In this study, we first synthesized PBCA-carried β-nerve growth factor, a neurotrophic agent with a large molecular weight, and then intravenously injected the compound into TBI rats. We found that despite undergoing several synthesis steps and host circulation, β-NGF was able to be successfully delivered into the injured brain by PBCA nanoparticles, still maintain its neurotrophic activity for neurite outgrowth, and could reduce the mortality of TBI rats. Our findings indicate that PBCA nanoparticles, with Tween 80, are an efficient delivery vector and a protective reservoir for large molecular therapeutic agents to treat TBI intravenously.


Sign in / Sign up

Export Citation Format

Share Document