Unusual motor unit firing behavior in older adults

1989 ◽  
Vol 482 (1) ◽  
pp. 136-140 ◽  
Author(s):  
Gary Kamen ◽  
Carlo J. De Luca
2009 ◽  
Vol 197 (4) ◽  
pp. 337-345 ◽  
Author(s):  
L. Griffin ◽  
P. E. Painter ◽  
A. Wadhwa ◽  
W. W. Spirduso

Author(s):  
Eric A. Kirk ◽  
Anita D. Christie ◽  
Christopher A. Knight ◽  
Charles L. Rice

Motor unit (MU) firing rate (FR) frequency is lower in aged adults, compared with young, at relative voluntary contraction intensities. However, from a variety of independent studies of disparate muscles, the age-related degree of difference in FR among muscles is unclear. Using a standardized statistical approach with data derived from primary studies, we quantified differences in FRs across several muscles between younger and older adults. The dataset included 12 different muscles in young (18-35) and older adults (62-93 years) from 18 published and one unpublished study. Experiments recorded single MU activity from intramuscular electromyography during constant isometric contraction at different (step-like) voluntary intensities. For each muscle, FR ranges and FR variance explained by voluntary contraction intensity were determined using bootstrapping. Dissimilarity of FR variance among muscles was calculated by Euclidean distances. There were 3-fold differences in the absolute frequency of FR ranges across muscles in the young (soleus 8-16 and superior trapezius 20-49 Hz), but in the old, FR ranges were more similar and lower for 9 out of 12 muscles. In contrast, the explained FR variance from voluntary contraction intensity in the older group had 1.6-fold greater dissimilarity among muscles than the young (p < 0.001), with FR variance differences being muscle dependent. Therefore, differences between muscle FR ranges were not explained by how FRs scale to changes in voluntary contraction intensity within each muscle. Instead, FRs were muscle dependent but were more dissimilar among muscles in the older group in their responsiveness to voluntary contraction intensity.


1994 ◽  
Vol 43 (3) ◽  
pp. 137-142 ◽  
Author(s):  
Yoshihisa Masakado

2017 ◽  
Vol 118 (2) ◽  
pp. 1355-1360
Author(s):  
Lydia P. Kudina ◽  
Regina E. Andreeva

Excitability of single slow axons was estimated by motor unit firing index in response to motor nerve stimulation, and its changes throughout a target interspike interval were explored during transmitting human motoneuron natural firing. It was found that axons exhibited early irresponsive, responsive, and later irresponsive periods. Findings question whether the traditionally described axonal excitability recovery cycle is realistic in natural motor control.


1998 ◽  
Vol 80 (3) ◽  
pp. 1373-1382 ◽  
Author(s):  
Alexander Adam ◽  
Carlo J. De Luca ◽  
Zeynep Erim

Adam, Alexander, Carlo J. De Luca, and Zeynep Erim. Hand dominance and motor unit firing behavior. J. Neurophysiol. 80: 1373–1382, 1998. Daily preferential use was shown to alter physiological and mechanical properties of skeletal muscle. This study was aimed at revealing differences in the control strategy of muscle pairs in humans who show a clear preference for one hand. We compared the motor unit (MU) recruitment and firing behavior in the first dorsal interosseous (FDI) muscle of both hands in eight male volunteers whose hand preference was evaluated with the use of a standard questionnaire. Myoelectric signals were recorded while subjects isometrically abducted the index finger at 30% of the maximal voluntary contraction (MVC) force. A myoelectric signal decomposition technique was used to accurately identify MU firing times from the myoelectric signal. In MUs of the dominant hand, mean values for recruitment threshold, initial firing rate, average firing rate at target force, and discharge variability were lower when compared with the nondominant hand. Analysis of the cross-correlation between mean firing rate and muscle force revealed cross-correlation peaks of longer latency in the dominant hand than in the nondominant side. This lag of the force output with respect to fluctuations in the firing behavior of MUs is indicative of a greater mechanical delay in the dominant FDI muscle. MVC force was not significantly different across muscle pairs, but the variability of force at the submaximal target level was higher in the nondominant side. The presence of lower average firing rates, lower recruitment thresholds, and greater firing rate/force delay in the dominant hand is consistent with the notion of an increased percentage of slow twitch fibers in the preferentially used muscle, allowing twitch fusion and force buildup to occur at lower firing rates. It is suggested that a lifetime of preferred use may cause adaptations in the fiber composition of the dominant muscle such that the mechanical effectiveness of its MUs increased.


Sign in / Sign up

Export Citation Format

Share Document