Direct projections from the orofacial region of the primary motor cortex to the superior colliculus in the macaque monkey

1995 ◽  
Vol 703 (1-2) ◽  
pp. 217-222 ◽  
Author(s):  
Hironobu Tokuno ◽  
Masahiko Takada ◽  
Atsushi Nambu ◽  
Masahiko Inase
Neuroscience ◽  
2017 ◽  
Vol 357 ◽  
pp. 303-324 ◽  
Author(s):  
Julie Savidan ◽  
Mélanie Kaeser ◽  
Abderraouf Belhaj-Saïf ◽  
Eric Schmidlin ◽  
Eric M. Rouiller

2003 ◽  
Vol 90 (2) ◽  
pp. 832-842 ◽  
Author(s):  
G. Cerri ◽  
H. Shimazu ◽  
M. A. Maier ◽  
R. N. Lemon

We demonstrate that in the macaque monkey there is robust, short-latency facilitation by ventral premotor cortex (area F5) of motor outputs from primary motor cortex (M1) to contralateral intrinsic hand muscles. Experiments were carried out on two adult macaques under light sedation (ketamine plus medetomidine HCl). Facilitation of hand muscle electromyograms (EMG) was tested using arrays of fine intracortical microwires implanted, respectively, in the wrist/digit motor representations of F5 and M1, which were identified by previous mapping with intracortical microstimulation. Single pulses (70–200 μA) delivered to F5 microwires never evoked any EMG responses, but small responses were occasionally seen with double pulses (interval: 3 ms) at high intensity. However, both single- and double-pulse stimulation of F5 could facilitate the EMG responses evoked from M1 by single shocks. The facilitation was large (up to 4-fold with single and 12-fold with double F5 shocks) and occurred with an early onset, with significant effects at intervals of only 1–2 ms between conditioning F5 and test M1 stimuli. A number of possible pathways could be responsible for these effects, although it is argued that the most likely mechanism would be the facilitation, by cortico-cortical inputs from F5, of corticospinal I wave activity evoked from M1. This facilitatory action could be of considerable importance for the coupling of grasp-related neurons in F5 and M1 during visuomotor tasks.


2004 ◽  
Vol 92 (5) ◽  
pp. 2968-2984 ◽  
Author(s):  
Michael C. Park ◽  
Abderraouf Belhaj-Saïf ◽  
Paul D. Cheney

Stimulus-triggered averaging (StTA) of electromyographic (EMG) activity from 24 simultaneously recorded forelimb muscles was used to investigate properties of primary motor cortex (M1) output in the macaque monkey. Two monkeys were trained to perform a reach-to-grasp task requiring multijoint coordination of the forelimb. EMG activity was recorded from 24 forelimb muscles including 5 shoulder, 7 elbow, 5 wrist, 5 digit, and 2 intrinsic hand muscles. Microstimulation (15 μA at 15 Hz) was delivered throughout the movement task. From 297 stimulation sites in M1, a total of 2,079 poststimulus effects (PStE) were obtained including 1,398 poststimulus facilitation (PStF) effects and 681 poststimulus suppression (PStS) effects. Of the PStF effects, 60% were in distal and 40% in proximal muscles; 43% were of extensors and 47% flexors. For PStS, the corresponding numbers were 55 and 45% and 36 and 55%, respectively. M1 output effects showed extensive cofacilitation of proximal and distal muscles (96 sites, 42%) including 47 sites that facilitated at least one shoulder, elbow, and distal muscle, 45 sites that facilitated an elbow muscle and a distal muscle, and 22 sites that facilitated at least one muscle at all joints. The muscle synergies represented by outputs from these sites may serve an important role in the production of coordinated, multijoint movements. M1 output effects showed many similarities with red nucleus output although red nucleus effects were generally weaker and showed a strong bias toward facilitation of extensor muscles and a greater tendency to facilitate synergies involving muscles at noncontiguous joints.


2009 ◽  
Vol 587 (5) ◽  
pp. 1057-1069 ◽  
Author(s):  
Gita Prabhu ◽  
Hideki Shimazu ◽  
Gabriella Cerri ◽  
Thomas Brochier ◽  
Rachel L. Spinks ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document