emg activity
Recently Published Documents


TOTAL DOCUMENTS

1824
(FIVE YEARS 279)

H-INDEX

96
(FIVE YEARS 5)

2022 ◽  
Vol 12 ◽  
Author(s):  
AmirAli Jafarnezhadgero ◽  
Nasrin Amirzadeh ◽  
Amir Fatollahi ◽  
Marefat Siahkouhian ◽  
Anderson S. Oliveira ◽  
...  

Background: In terms of physiological and biomechanical characteristics, over-pronation of the feet has been associated with distinct muscle recruitment patterns and ground reaction forces during running.Objective: The aim of this study was to evaluate the effects of running on sand vs. stable ground on ground-reaction-forces (GRFs) and electromyographic (EMG) activity of lower limb muscles in individuals with over-pronated feet (OPF) compared with healthy controls.Methods: Thirty-three OPF individuals and 33 controls ran at preferred speed and in randomized-order over level-ground and sand. A force-plate was embedded in an 18-m runway to collect GRFs. Muscle activities were recorded using an EMG-system. Data were adjusted for surface-related differences in running speed.Results: Running on sand resulted in lower speed compared with stable ground running (p < 0.001; d = 0.83). Results demonstrated that running on sand produced higher tibialis anterior activity (p = 0.024; d = 0.28). Also, findings indicated larger loading rates (p = 0.004; d = 0.72) and greater vastus medialis (p < 0.001; d = 0.89) and rectus femoris (p = 0.001; d = 0.61) activities in OPF individuals. Controls but not OPF showed significantly lower gluteus-medius activity (p = 0.022; d = 0.63) when running on sand.Conclusion: Running on sand resulted in lower running speed and higher tibialis anterior activity during the loading phase. This may indicate alterations in neuromuscular demands in the distal part of the lower limbs when running on sand. In OPF individuals, higher loading rates together with greater quadriceps activity may constitute a proximal compensatory mechanism for distal surface instability.


Author(s):  
Giovanni Vecchiato ◽  
Maria Del Vecchio ◽  
Jonas Ambeck-Madsen ◽  
Luca Ascari ◽  
Pietro Avanzini

AbstractUnderstanding mental processes in complex human behavior is a key issue in driving, representing a milestone for developing user-centered assistive driving devices. Here, we propose a hybrid method based on electroencephalographic (EEG) and electromyographic (EMG) signatures to distinguish left and right steering in driving scenarios. Twenty-four participants took part in the experiment consisting of recordings of 128-channel EEG and EMG activity from deltoids and forearm extensors in non-ecological and ecological steering tasks. Specifically, we identified the EEG mu rhythm modulation correlates with motor preparation of self-paced steering actions in the non-ecological task, while the concurrent EMG activity of the left (right) deltoids correlates with right (left) steering. Consequently, we exploited the mu rhythm de-synchronization resulting from the non-ecological task to detect the steering side using cross-correlation analysis with the ecological EMG signals. Results returned significant cross-correlation values showing the coupling between the non-ecological EEG feature and the muscular activity collected in ecological driving conditions. Moreover, such cross-correlation patterns discriminate the steering side earlier relative to the single EMG signal. This hybrid system overcomes the limitation of the EEG signals collected in ecological settings such as low reliability, accuracy, and adaptability, thus adding to the EMG the characteristic predictive power of the cerebral data. These results prove how it is possible to complement different physiological signals to control the level of assistance needed by the driver.


2022 ◽  
Vol 3 ◽  
Author(s):  
Steven J. O'Bryan ◽  
Janet L. Taylor ◽  
Jessica M. D'Amico ◽  
David M. Rouffet

Purpose: To investigate how quadriceps muscle fatigue affects power production over the extension and flexion phases and muscle activation during maximal cycling.Methods: Ten participants performed 10-s maximal cycling efforts without fatigue and after 120 bilateral maximal concentric contractions of the quadriceps muscles. Extension power, flexion power and electromyographic (EMG) activity were compared between maximal cycling trials. We also investigated the associations between changes in quadriceps force during isometric maximal voluntary contractions (IMVC) and power output (flexion and extension) during maximal cycling, in addition to inter-individual variability in muscle activation and pedal force profiles.Results: Quadriceps IMVC (−52 ± 21%, P = 0.002), voluntary activation (−24 ± 14%, P < 0.001) and resting twitch amplitude (−45 ± 19%, P = 0.002) were reduced following the fatiguing task, whereas vastus lateralis (P = 0.58) and vastus medialis (P = 0.15) M-wave amplitudes were unchanged. The reductions in extension power (−15 ± 8%, P < 0.001) and flexion power (−24 ± 18%, P < 0.001) recorded during maximal cycling with fatigue of the quadriceps were dissociated from the decreases in quadriceps IMVC. Peak EMG decreased across all muscles while inter-individual variability in pedal force and EMG profiles increased during maximal cycling with quadriceps fatigue.Conclusion: Quadriceps fatigue induced by voluntary contractions led to reduced activation of all lower limb muscles, increased inter-individual variability and decreased power production during maximal cycling. Interestingly, power production was further reduced over the flexion phase (24%) than the extension phase (15%), likely due to larger levels of peripheral fatigue developed in RF muscle and/or a higher contribution of the quadriceps muscle to flexion power production compared to extension power during maximal cycling.


2022 ◽  
Vol 15 ◽  
Author(s):  
Grady W. Jensen ◽  
Patrick van der Smagt ◽  
Harald Luksch ◽  
Hans Straka ◽  
Tobias Kohl

Knowledge about body motion kinematics and underlying muscle contraction dynamics usually derives from electromyographic (EMG) recordings. However, acquisition of such signals in snakes is challenging because electrodes either attached to or implanted beneath the skin may unintentionally be removed by force or friction caused from undulatory motion, thus severely impeding chronic EMG recordings. Here, we present a reliable method for stable subdermal implantation of up to eight bipolar electrodes above the target muscles. The mechanical stability of the inserted electrodes and the overnight coverage of the snake body with a “sleeping bag” ensured the recording of reliable and robust chronic EMG activity. The utility of the technique was verified by daily acquisition of high signal-to-noise activity from all target sites over four consecutive days during stimulus-evoked postural reactions in Amazon tree boas and Western diamondback rattlesnakes. The successful demonstration of the chronic recording suggests that this technique can improve acute experiments by enabling the collection of larger data sets from single individuals.


Diagnostics ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 121
Author(s):  
Hanna Rüschenschmidt ◽  
Gerd Fabian Volk ◽  
Christoph Anders ◽  
Orlando Guntinas-Lichius

There are currently no data on the electromyography (EMG) of all intrinsic and extrinsic ear muscles. The aim of this work was to develop a standardized protocol for a reliable surface EMG examination of all nine ear muscles in twelve healthy participants. The protocol was then applied in seven patients with unilateral postparalytic facial synkinesis. Based on anatomic preparations of all ear muscles on two cadavers, hot spots for the needle EMG of each individual muscle were defined. Needle and surface EMG were performed in one healthy participant; facial movements could be defined for the reliable activation of individual ear muscles’ surface EMG. In healthy participants, most tasks led to the activation of several ear muscles without any side difference. The greatest EMG activity was seen when smiling. Ipsilateral and contralateral gaze were the only movements resulting in very distinct activation of the transversus auriculae and obliquus auriculae muscles. In patients with facial synkinesis, ear muscles’ EMG activation was stronger on the postparalytic compared to the contralateral side for most tasks. Additionally, synkinetic activation was verifiable in the ear muscles. The surface EMG of all ear muscles is reliably feasible during distinct facial tasks, and ear muscle EMG enriches facial electrodiagnostics.


Author(s):  
Abdulrahman Alshammari ◽  
Nabeel Almotairy ◽  
Abhishek Kumar ◽  
Anastasios Grigoriadis

Abstract Objective To investigate the effects of dental/skeletal malocclusion and orthodontic treatment on four main objective parameters of chewing and jaw function (maximum occlusal bite force [MOBF], masticatory muscle electromyography [EMG], jaw kinematics, and chewing efficiency/performance) in healthy children. Materials and methods Systematic searches were conducted in MEDLINE (OVID), Embase, and the Web of Science Core Collection. Studies that examined the four parameters in healthy children with malocclusions were included. The quality of studies and overall evidence were assessed using the Joanna Briggs Institute and GRADE tools, respectively. Results The searches identified 8192 studies; 57 were finally included. The quality of included studies was high in nine studies, moderate in twenty-three studies, and low in twenty-five studies. During the primary dentition, children with malocclusions showed similar MOBF and lower chewing efficiency compared to control subjects. During mixed/permanent dentition, children with malocclusion showed lower MOBF and EMG activity and chewing efficiency compared to control subjects. The jaw kinematics of children with unilateral posterior crossbite showed a larger jaw opening angle and a higher frequency of reverse chewing cycles compared to crossbite-free children. There was a low to moderate level of evidence on the effects of orthodontic treatment in restoring normal jaw function. Conclusions Based on the limitations of the studies included, it is not entirely possible to either support or deny the influence of dental/skeletal malocclusion traits on MOBF, EMG, jaw kinematics, and masticatory performance in healthy children. Furthermore, well-designed longitudinal studies may be needed to determine whether orthodontic treatments can improve chewing function in general. Clinical relevance Comprehensive orthodontic treatment, which includes evaluation and restoration of function, may or may not mitigate the effects of malocclusion and restore normal chewing function.


Author(s):  
Alessandro M. Zagatto ◽  
Gabriel M. Claus ◽  
Yago M. Dutra ◽  
Rodrigo A. de Poli ◽  
Vithor H. F. Lopes ◽  
...  

Abstract Background The aim of the investigation was to compare the occurrence of post-activation performance enhancement (PAPE) after drop jumps, or heavy sled towing, and the subsequent effect on repeated sprint ability (RSA). Methods Ten young basketball players (17 ± 1 yrs) performed, in randomized order, RSA test with changes of direction after a standardized warm up followed by drop jumps, heavy sled towing, or no exercise (control condition). Neuromuscular assessments composed of two maximal voluntary contractions of the knee extensors, peripheral nerve stimulation, and surface electromyography (EMG), responses were recorded before and immediately after the RSA. The EMG signal of leg muscles during sprinting were also recorded as well as the blood lactate concentration. Results The drop jumps improved the RSA mean time (P = 0.033), total time (P = 0.031), and slowest time (P = 0.029) compared to control condition, while heavy sled towing did not change RSA outcomes (P > 0.05). All conditions exhibited a decrease of doublet high frequency stimulation force (pre-post measurement) (P = 0.023) and voluntary activation (P = 0.041), evidencing the occurrence from peripheral and central components of fatigue after RSA, respectively, but no difference was evident between-conditions. There was a significantly greater EMG activity during sprints for the biceps femoris after drop jumps, only when compared to control condition (P = 0.013). Conclusion Repeated drop jumps were effective to induce PAPE in the form of RSA, while heavy sled towing had no effect on RSA performance in young basketball players. Furthermore, both conditioning activities exhibited similar levels of fatigue following the RSA protocol. Thus, drop jumps may be used as an alternative to induce PAPE and thus improve performance during sprints in young male basketball players.


2022 ◽  
Vol 12 ◽  
Author(s):  
Antenor Rodrigues ◽  
Luc Janssens ◽  
Daniel Langer ◽  
Umi Matsumura ◽  
Dmitry Rozenberg ◽  
...  

Background: Respiratory muscle electromyography (EMG) can identify whether a muscle is activated, its activation amplitude, and timing. Most studies have focused on the activation amplitude, while differences in timing and duration of activity have been less investigated. Detection of the timing of respiratory muscle activity is typically based on the visual inspection of the EMG signal. This method is time-consuming and prone to subjective interpretation.Aims: Our main objective was to develop and validate a method to assess the respective timing of different respiratory muscle activity in an objective and semi-automated manner.Method: Seven healthy adults performed an inspiratory threshold loading (ITL) test at 50% of their maximum inspiratory pressure until task failure. Surface EMG recordings of the costal diaphragm/intercostals, scalene, parasternal intercostals, and sternocleidomastoid were obtained during ITL. We developed a semi-automated algorithm to detect the onset (EMG, onset) and offset (EMG, offset) of each muscle’s EMG activity breath-by-breath with millisecond accuracy and compared its performance with manual evaluations from two independent assessors. For each muscle, the Intraclass Coefficient correlation (ICC) of the EMG, onset detection was determined between the two assessors and between the algorithm and each assessor. Additionally, we explored muscle differences in the EMG, onset, and EMG, offset timing, and duration of activity throughout the ITL.Results: More than 2000 EMG, onset s were analyzed for algorithm validation. ICCs ranged from 0.75–0.90 between assessor 1 and 2, 0.68–0.96 between assessor 1 and the algorithm, and 0.75–0.91 between assessor 2 and the algorithm (p < 0.01 for all). The lowest ICC was shown for the diaphragm/intercostal and the highest for the parasternal intercostal (0.68 and 0.96, respectively). During ITL, diaphragm/intercostal EMG, onset occurred later during the inspiratory cycle and its activity duration was shorter than the scalene, parasternal intercostal, and sternocleidomastoid (p < 0.01). EMG, offset occurred synchronously across all muscles (p ≥ 0.98). EMG, onset, and EMG, offset timing, and activity duration was consistent throughout the ITL for all muscles (p > 0.63).Conclusion: We developed an algorithm to detect EMG, onset of several respiratory muscles with millisecond accuracy that is time-efficient and validated against manual measures. Compared to the inherent bias of manual measures, the algorithm enhances objectivity and provides a strong standard for determining the respiratory muscle EMG, onset.


2022 ◽  
Vol 10 (1) ◽  
pp. 232596712110638
Author(s):  
Xin He ◽  
Jihong Qiu ◽  
Mingde Cao ◽  
Yui Chung Ho ◽  
Hio Teng Leong ◽  
...  

Background: Understanding the role of neuromuscular and mechanical muscle properties in knee functional performance and dynamic knee stability after anterior cruciate ligament reconstruction (ACLR) may help in the development of more focused rehabilitation programs. Purpose: To compare the involved and uninvolved limbs of patients after ACLR in terms of muscle strength, passive muscle stiffness, muscle activation of the quadriceps and hamstrings, hop performance, and dynamic knee stability and to investigate the association of neuromuscular and mechanical muscle properties with hop performance and dynamic knee stability. Study Design: Cross-sectional study; Level of evidence, 3. Method: The authors studied the quadriceps and hamstring muscles in 30 male patients (mean ± SD age, 25.4 ± 4.1 years) who had undergone unilateral ACLR. Muscle strength was measured using isokinetic testing at 60 and 180 deg/s. Passive muscle stiffness was quantified using ultrasound shear wave elastography. Muscle activation was evaluated via electromyographic (EMG) activity. Hop performance was evaluated via a single-leg hop test, and dynamic knee stability was evaluated via 3-dimensional knee movements during the landing phase of the hop test. Results: Compared with the uninvolved limb, the involved limb exhibited decreased peak torque and shear modulus in both the quadriceps and hamstrings as well as delayed activity onset in the quadriceps ( P < .05 for all). The involved limb also exhibited a shorter hop distance and decreased peak knee flexion angle during landing ( P < .05 for both). Decreased peak quadriceps torque at 180 deg/s, the shear modulus of the semitendinosus, and the reactive EMG activity amplitude of the semimembranosus were all associated with shorter hop distance ( R 2 = 0.565; P < .001). Decreased quadriceps peak torque at 60 deg/s and shear modulus of the vastus medialis were both associated with smaller peak knee flexion angle ( R 2 = 0.319; P < .001). Conclusion: In addition to muscle strength deficits, deficits in passive muscle stiffness and muscle activation of the quadriceps and hamstrings were important contributors to poor single-leg hop performance and dynamic knee stability during landing. Further investigations should include a rehabilitation program that normalizes muscle stiffness and activation patterns during landing, thus improving knee functional performance and dynamic knee stability.


2021 ◽  
Vol 17 (12) ◽  
pp. e1009677
Author(s):  
Jessica R. Parker ◽  
Alexander N. Klishko ◽  
Boris I. Prilutsky ◽  
Gennady S. Cymbalyuk

Mutually inhibitory populations of neurons, half-center oscillators (HCOs), are commonly involved in the dynamics of the central pattern generators (CPGs) driving various rhythmic movements. Previously, we developed a multifunctional, multistable symmetric HCO model which produced slow locomotor-like and fast paw-shake-like activity patterns. Here, we describe asymmetric features of paw-shake responses in a symmetric HCO model and test these predictions experimentally. We considered bursting properties of the two model half-centers during transient paw-shake-like responses to short perturbations during locomotor-like activity. We found that when a current pulse was applied during the spiking phase of one half-center, let’s call it #1, the consecutive burst durations (BDs) of that half-center increased throughout the paw-shake response, while BDs of the other half-center, let’s call it #2, only changed slightly. In contrast, the consecutive interburst intervals (IBIs) of half-center #1 changed little, while IBIs of half-center #2 increased. We demonstrated that this asymmetry between the half-centers depends on the phase of the locomotor-like rhythm at which the perturbation was applied. We suggest that the fast transient response reflects functional asymmetries of slow processes that underly the locomotor-like pattern; e.g., asymmetric levels of inactivation across the two half-centers for a slowly inactivating inward current. We compared model results with those of in-vivo paw-shake responses evoked in locomoting cats and found similar asymmetries. Electromyographic (EMG) BDs of anterior hindlimb muscles with flexor-related activity increased in consecutive paw-shake cycles, while BD of posterior muscles with extensor-related activity did not change, and vice versa for IBIs of anterior flexors and posterior extensors. We conclude that EMG activity patterns during paw-shaking are consistent with the proposed mechanism producing transient paw-shake-like bursting patterns found in our multistable HCO model. We suggest that the described asymmetry of paw-shaking responses could implicate a multifunctional CPG controlling both locomotion and paw-shaking.


Sign in / Sign up

Export Citation Format

Share Document