A reply to the discussion of “mechanism of sulfate attack on portland cement concrete — another look” by S. Chatterji

1984 ◽  
Vol 14 (1) ◽  
pp. 153
Author(s):  
P.K. Mehta
2010 ◽  
Vol 636-637 ◽  
pp. 1349-1354
Author(s):  
K. Sotiriadis ◽  
E. Nikolopoulou ◽  
Sotiris Tsivilis

In this paper the effect of chlorides on the thaumasite form of sulfate attack in limestone cement concrete is studied. Concrete specimens made from ordinary Portland cement and two Portland limestone cements (limestone content 15% and 35% respectively) were prepared. After 28 days of curing the specimens were immersed in six solutions of various sulfate and chloride content and stored at 5oC. Visual assessment of the specimens, mass measurements and compressive strength tests took place for a period of 24 months. XRD method was used to identify thaumasite in the deteriorated parts of the specimens. All measurements showed that Portland cement concrete exhibits a lower degree of deterioration than Portland limestone cement concrete. Specimen disintegration was more severe, the higher the limestone contents of the cements and the higher the sulfate content of the corrosive storage solutions. Chlorides play an inhibitory role, delaying the deterioration of the concrete specimens. XRD analysis showed the presence of thaumasite at the deteriorated parts of the specimens after nine months of curing.


1997 ◽  
Vol 503 ◽  
Author(s):  
B. K. Diefenderfer ◽  
I. L. Al-Qadi ◽  
J. J. Yoho ◽  
S. M. Riad ◽  
A. Loulizi

ABSTRACTPortland cement concrete (PCC) structures deteriorate with age and need to be maintained or replaced. Early detection of deterioration in PCC (e.g., alkali-silica reaction, freeze/thaw damage, or chloride presence) can lead to significant reductions in maintenance costs. However, it is often too late to perform low-cost preventative maintenance by the time deterioration becomes evident. By developing techniques that would enable civil engineers to evaluate PCC structures and detect deterioration at early stages (without causing further damage), optimization of life-cycle costs of the constructed facility and minimization of disturbance to the facility users can be achieved.Nondestructive evaluation (NDE) methods are potentially one of the most useful techniques ever developed for assessing constructed facilities. They are noninvasive and can be performed rapidly. Portland cement concrete can be nondestructively evaluated by electrically characterizing its complex dielectric constant. The real part of the dielectric constant depicts the velocity of electromagnetic waves in PCC. The imaginary part, termed the “loss factor,” describes the conductivity of PCC and the attenuation of electromagnetic waves.Dielectric properties of PCC have been investigated in a laboratory setting using a parallel plate capacitor operating in the frequency range of 0.1 to 40.1MIHz. This capacitor set-up consists of two horizontal-parallel plates with an adjustable separation for insertion of a dielectric specimen (PCC). While useful in research, this approach is not practical for field implementation. A new capacitor probe has been developed which consists of two plates, located within the same horizontal plane, for placement upon the specimen to be tested. Preliminary results show that this technique is feasible and results are promising; further testing and evaluation is currently underway.


Sign in / Sign up

Export Citation Format

Share Document