Ab initio determination of the ground-state potential energy curve for Ar2

1982 ◽  
Vol 85 (4) ◽  
pp. 423-427 ◽  
Author(s):  
M. Krauss ◽  
W.J. Stevens
2012 ◽  
Vol 116 (7) ◽  
pp. 1717-1729 ◽  
Author(s):  
Laimutis Bytautas ◽  
Nikita Matsunaga ◽  
Gustavo E. Scuseria ◽  
Klaus Ruedenberg

2007 ◽  
Vol 111 (49) ◽  
pp. 12495-12505 ◽  
Author(s):  
Alireza Shayesteh ◽  
Robert D. E. Henderson ◽  
Robert J. Le Roy ◽  
Peter F. Bernath

1985 ◽  
Vol 96 (1) ◽  
pp. 59-79 ◽  
Author(s):  
Geerd H.F. Diercksen ◽  
Vladimir Kellō ◽  
Andrzej J. Sadlej

1993 ◽  
Vol 58 (7) ◽  
pp. 1485-1490 ◽  
Author(s):  
Narayanan Rajamanickam ◽  
Natarajan Ponraj ◽  
Ponpandian Durai Ezhilarasan ◽  
Veluchamy Arumugachamy ◽  
Manuel Fernandez Gomez ◽  
...  

The potential energy curve for the electronic ground state of the SnCl molecule has been constructed by the Rydberg-Klein-Rees method in the modification by Vanderslice and collaborators. Empirical potential functions, of five parameters by Hulburt and Hirschfelder, of three parameters by Lippincott and collaborators, and that by Szoke and Baitz using the electronegativity are examined for their adequacy to represent the true curve. The five parameters by Hulburt-Hirschfelder function, U(r) = De[(1 - e-x)2 + c x3 e-2x (1 + bx)], was found to be the best fitting function and it was used for the determination of the dissociation energy. The estimated value attained for dissociation energy is 346 ± 8 kJ mol-1. For this value of dissociation energy, the estimated values for parameters and expansion coefficients are c = 0.06864, b = -0.363738, a0 = 2.759 . 103 m-1, a1 = 2.876 and a2 = 4.013, a0, a1 and a2, being the Dunham's coefficients.


Sign in / Sign up

Export Citation Format

Share Document