order perturbation
Recently Published Documents


TOTAL DOCUMENTS

991
(FIVE YEARS 95)

H-INDEX

67
(FIVE YEARS 5)

2022 ◽  
Vol 309 ◽  
pp. 291-310
Author(s):  
Jackson Itikawa ◽  
Regilene Oliveira ◽  
Joan Torregrosa

2021 ◽  
Vol 81 (12) ◽  
Author(s):  
Xin-Yang Wang ◽  
Jie Jiang

AbstractThe singularity at the center of charged Bañados–Teitelboim–Zanelli (BTZ) black holes is called a conical singularity. Unlike the canonical singularity in typical black holes, a conical singularity does not destroy the causality of spacetime. Due to the special property of the conical singularity, we examine the weak cosmic censorship conjecture (WCCC) using the new version of the gedanken experiment proposed by Sorce and Wald. A perturbation process wherein the spherically symmetric matter fields pass through the event horizon and fall into the black holes is considered. Assuming that the cosmological constant is obtained by the matter fields, it therefore can be seen as a dynamical variable during the process. From this perspective, according to the stability condition and the null energy condition, the first- and second-order perturbation inequalities are derived. Based on the first-order optimal condition and the second-order perturbation inequality, we show that the nearly extremal charged BTZ black hole cannot be destroyed in the above perturbation process. The result also implies that even if the singularity at the center of the black hole is conical, it still should be surrounded by the event horizon and hidden inside the black hole.


2021 ◽  
pp. 40-55
Author(s):  
Andrew M. Steane

A complete theory of weak-field gravity is described: the linearized approximation. This is a form of first-order perturbation theory. The concept of a gauge transformation, as applied to the curvature tensor and the field equation, is explained, and it is shown how to reduce the field equation to a wave equation in the Lorenz gauge (under the linear approximation). Thus a huge variety of gravitational calculations become accessible.


Author(s):  
Sombuddha Bhattacharyya ◽  
Tuhin Ghosh

AbstractThis article offers a study of the Calderón type inverse problem of determining up to second order coefficients of higher order elliptic operators. Here we show that it is possible to determine an anisotropic second order perturbation given by a symmetric matrix, along with a first order perturbation given by a vector field and a zero-th order potential function inside a bounded domain, by measuring the Dirichlet to Neumann map of the perturbed biharmonic operator on the boundary of that domain.


Sign in / Sign up

Export Citation Format

Share Document