In vivo and in vitro pharmacology of SR 48,968, a non-peptide tachykinin NK2 receptor antagonist

1993 ◽  
Vol 234 (1) ◽  
pp. 83-90 ◽  
Author(s):  
Carlo Alberto Maggi ◽  
Riccardo Patacchini ◽  
Sandro Giuliani ◽  
Antonio Giachetti
1992 ◽  
Vol 37 ◽  
pp. S63
Author(s):  
S. Giuliani ◽  
R. Patacchini ◽  
A. Giachetti ◽  
C.A. Maggi

1995 ◽  
Vol 294 (2-3) ◽  
pp. 677-684 ◽  
Author(s):  
Pascale Robineau ◽  
Michel Lonchampt ◽  
Nathalie Kucharczyk ◽  
James E. Krause ◽  
Domenico Regoli ◽  
...  

2020 ◽  
Vol 5 (1) ◽  
Author(s):  
Vidya Narayanaswami ◽  
Junchao Tong ◽  
Ferdinando Fiorino ◽  
Beatrice Severino ◽  
Rosa Sparaco ◽  
...  

2015 ◽  
Vol 88 (3) ◽  
pp. 617-623 ◽  
Author(s):  
Kelly R. Monk ◽  
Jörg Hamann ◽  
Tobias Langenhan ◽  
Saskia Nijmeijer ◽  
Torsten Schöneberg ◽  
...  

2012 ◽  
Vol 22 (21) ◽  
pp. 6661-6664 ◽  
Author(s):  
Charles J. McElhinny ◽  
Anita H. Lewin ◽  
S. Wayne Mascarella ◽  
Scott Runyon ◽  
Lawrence Brieaddy ◽  
...  

2017 ◽  
Vol 43 (5) ◽  
pp. 1790-1802 ◽  
Author(s):  
Hyun Jung Kim ◽  
Taewon Han ◽  
Yun Tai Kim ◽  
Insuk So ◽  
Byung Joo Kim

Background: Magnolia officinalis Rehder and EH Wilson (M. officinalis) are traditional Chinese medicines widely used for gastrointestinal (GI) tract motility disorder in Asian countries. We investigated the effects of an ethanol extract of M. officinalis (MOE) on the pacemaker potentials of cultured interstitial cells of Cajal (ICCs) in vitro and its effects on GI motor functions in vivo. Methods: We isolated ICCs from small intestines, and the whole-cell patch-clamp configuration was used to record the pacemaker potentials in cultured ICCs in vitro. Both gastric emptying (GE) and intestinal transit rates (ITRs) were investigated in normal and GI motility dysfunction (GMD) mice models in vivo. Results: MOE depolarized ICC pacemaker potentials dose-dependently. Pretreatment with methoctramine (a muscarinic M2 receptor antagonist) and 4-DAMP (a muscarinic M3 receptor antagonist) inhibited the effects of MOE on the pacemaker potential relative to treatment with MOE alone. In addition, MOE depolarized pacemaker potentials after pretreatment with Y25130 (a 5-HT3 receptor antagonist), GR113808 (a 5-HT4 receptor antagonist) or SB269970 (a 5-HT7 receptor antagonist). However, pretreatment with RS39604 (a 5-HT4 receptor antagonist) blocked MOE-induced pacemaker potential depolarizations. Intracellular GDPβS inhibited MOE-induced pacemaker potential depolarization, as did pretreatment with Ca2+ free solution or thapsigargin. In normal mice, the GE and ITR values were significantly and dose-dependently increased by MOE. In loperamide-and cisplatin-induced GE delay models, MOE administration reversed the GE deficits. The ITRs of the GMD mice were significantly reduced relative to those of normal mice, which were significantly and dose-dependently reversed by MOE. Conclusion: These results suggest that MOE dose-dependently depolarizes ICCs pacemaker potentials through M2 and M3 receptors via internal and external Ca2+ regulation through G protein pathways in vitro. Moreover, MOE increased GE and ITRs in vivo in normal and GMD mouse models. Taken together, the results of this study show that MOE have the potential for development as a gastroprokinetic agent in GI motility function.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Adam J. Davenport ◽  
Ioana Neagoe ◽  
Nico Bräuer ◽  
Markus Koch ◽  
Andrea Rotgeri ◽  
...  

AbstractATP-dependent P2X3 receptors play a crucial role in the sensitization of nerve fibers and pathological pain pathways. They are also involved in pathways triggering cough and may contribute to the pathophysiology of endometriosis and overactive bladder. However, despite the strong therapeutic rationale for targeting P2X3 receptors, preliminary antagonists have been hampered by off-target effects, including severe taste disturbances associated with blocking the P2X2/3 receptor heterotrimer. Here we present a P2X3 receptor antagonist, eliapixant (BAY 1817080), which is both highly potent and selective for P2X3 over other P2X subtypes in vitro, including P2X2/3. We show that eliapixant reduces inflammatory pain in relevant animal models. We also provide the first in vivo experimental evidence that P2X3 antagonism reduces neurogenic inflammation, a phenomenon hypothesised to contribute to several diseases, including endometriosis. To test whether eliapixant could help treat endometriosis, we confirmed P2X3 expression on nerve fibers innervating human endometriotic lesions. We then demonstrate that eliapixant reduces vaginal hyperalgesia in an animal model of endometriosis-associated dyspareunia, even beyond treatment cessation. Our findings indicate that P2X3 antagonism could alleviate pain, including non-menstrual pelvic pain, and modify the underlying disease pathophysiology in women with endometriosis. Eliapixant is currently under clinical development for the treatment of disorders associated with hypersensitive nerve fibers.


Sign in / Sign up

Export Citation Format

Share Document