p2x3 receptors
Recently Published Documents


TOTAL DOCUMENTS

135
(FIVE YEARS 28)

H-INDEX

31
(FIVE YEARS 3)

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Adam J. Davenport ◽  
Ioana Neagoe ◽  
Nico Bräuer ◽  
Markus Koch ◽  
Andrea Rotgeri ◽  
...  

AbstractATP-dependent P2X3 receptors play a crucial role in the sensitization of nerve fibers and pathological pain pathways. They are also involved in pathways triggering cough and may contribute to the pathophysiology of endometriosis and overactive bladder. However, despite the strong therapeutic rationale for targeting P2X3 receptors, preliminary antagonists have been hampered by off-target effects, including severe taste disturbances associated with blocking the P2X2/3 receptor heterotrimer. Here we present a P2X3 receptor antagonist, eliapixant (BAY 1817080), which is both highly potent and selective for P2X3 over other P2X subtypes in vitro, including P2X2/3. We show that eliapixant reduces inflammatory pain in relevant animal models. We also provide the first in vivo experimental evidence that P2X3 antagonism reduces neurogenic inflammation, a phenomenon hypothesised to contribute to several diseases, including endometriosis. To test whether eliapixant could help treat endometriosis, we confirmed P2X3 expression on nerve fibers innervating human endometriotic lesions. We then demonstrate that eliapixant reduces vaginal hyperalgesia in an animal model of endometriosis-associated dyspareunia, even beyond treatment cessation. Our findings indicate that P2X3 antagonism could alleviate pain, including non-menstrual pelvic pain, and modify the underlying disease pathophysiology in women with endometriosis. Eliapixant is currently under clinical development for the treatment of disorders associated with hypersensitive nerve fibers.


2021 ◽  
Vol 15 ◽  
Author(s):  
Riffat Mehboob ◽  
Anna Marchenkova ◽  
Arn M. J. M. van den Maagdenberg ◽  
Andrea Nistri

Trigeminal sensory neurons of transgenic knock-in (KI) mice expressing the R192Q missense mutation in the α1A subunit of neuronal voltage-gated CaV2.1 Ca2+ channels, which leads to familial hemiplegic migraine type 1 (FHM1) in patients, exhibit a hyperexcitability phenotype. Here, we show that the expression of NaV1.7 channels, linked to pain states, is upregulated in KI primary cultures of trigeminal ganglia (TG), as shown by increased expression of its α1 subunit. In the majority of TG neurons, NaV1.7 channels are co-expressed with ATP-gated P2X3 receptors (P2X3R), which are important nociceptive sensors. Reversing the trigeminal phenotype with selective CaV2.1 channel inhibitor ω-agatoxin IVA inhibited NaV1.7 overexpression. Functionally, KI neurons revealed a TTX-sensitive inward current of larger amplitude that was partially inhibited by selective NaV1.7 blocker Tp1a. Under current-clamp condition, Tp1a raised the spike threshold of both wild-type (WT) and KI neurons with decreased firing rate in KI cells. NaV1.7 activator OD1 accelerated firing in WT and KI neurons, a phenomenon blocked by Tp1a. Enhanced expression and function of NaV1.7 channels in KI TG neurons resulted in higher excitability and facilitated nociceptive signaling. Co-expression of NaV1.7 channels and P2X3Rs in TGs may explain how hypersensitivity to local stimuli can be relevant to migraine.


2021 ◽  
pp. 2004240
Author(s):  
Alyn Morice ◽  
Jaclyn A. Smith ◽  
Lorcan McGarvey ◽  
Surinder S. Birring ◽  
Sean M. Parker ◽  
...  

ATP acting via P2X3 receptors is an important mediator of refractory chronic cough (RCC). This phase 2a double-blinded crossover study assessed the safety, tolerability and efficacy of eliapixant (BAY 1817080), a selective P2X3 receptor antagonist, in adults with RCC attending specialist centres.In period A, patients received placebo for 2 weeks then eliapixant 10 mg for 1 week. In period B, patients received eliapixant 50, 200 and 750 mg twice daily for 1 week per dose level. Patients were randomised 1:1 to period A–B (n=20) or B–A (n=20). The primary efficacy endpoint was change in cough frequency assessed over 24 h (VitaloJAK). Primary safety endpoint was frequency and severity of adverse events (AEs).Thirty-seven patients completed randomised therapy. Mean cough frequency fell by 17.4% versus baseline with placebo. Eliapixant reduced cough frequency at doses ≥50 mg (reduction versus placebo at 750 mg, 25%: 90% confidence interval, 11.5–36.5%; p=0.002). Doses ≥50 mg also significantly reduced cough severity. AEs, mostly mild or moderate, were reported in 65% of patients with placebo and 41–49% receiving eliapixant. Cumulative rates of taste-related AEs were 3% with placebo and 5–21% with eliapixant: all were mild.Selective P2X3 antagonism with eliapixant significantly reduced cough frequency and severity, confirming this as a viable therapeutic pathway for RCC. Taste-related side-effects were lower at therapeutic doses than with the less selective P2X3 antagonist gefapixant. Selective P2X3 antagonism appears to be a novel therapeutic approach for RCC.


2021 ◽  
Vol 22 (1) ◽  
pp. 405
Author(s):  
Ruirui Lu ◽  
Katharina Metzner ◽  
Fangyuan Zhou ◽  
Cathrin Flauaus ◽  
Annika Balzulat ◽  
...  

The sodium-activated potassium channel Slack (KNa1.1, Slo2.2, or Kcnt1) is highly expressed in populations of sensory neurons, where it mediates the sodium-activated potassium current (IKNa) and modulates neuronal activity. Previous studies suggest that Slack is involved in the processing of neuropathic pain. However, mechanisms underlying the regulation of Slack activity in this context are poorly understood. Using whole-cell patch-clamp recordings we found that Slack-mediated IKNa in sensory neurons of mice is reduced after peripheral nerve injury, thereby contributing to neuropathic pain hypersensitivity. Interestingly, Slack is closely associated with ATP-sensitive P2X3 receptors in a population of sensory neurons. In vitro experiments revealed that Slack-mediated IKNa may be bidirectionally modulated in response to P2X3 activation. Moreover, mice lacking Slack show altered nocifensive responses to P2X3 stimulation. Our study identifies P2X3/Slack signaling as a mechanism contributing to hypersensitivity after peripheral nerve injury and proposes a potential novel strategy for treatment of neuropathic pain.


2020 ◽  
Vol 334 ◽  
pp. 113482
Author(s):  
Jin-Jin He ◽  
Xiao Wang ◽  
Chao Liang ◽  
Xin Yao ◽  
Zhan-Sheng Zhang ◽  
...  

Author(s):  
Christopher Edwards

Abstract This paper attempts to explain how the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus causes the complications that make coronavirus disease 2019 (COVID-19) a serious disease in specific patient subgroups. It suggests that cortisol-associated activation of the mineralocorticoid receptor (MR) in epithelial and endothelial cells infected with the virus stimulates the release of adenosine 5′-triphosphate (ATP), which then acts back on purinergic receptors. In the lung this could produce the nonproductive cough via purinergic P2X3 receptors on vagal afferent nerves. In endothelial cells it could stimulate exocytosis of Weibel-Palade bodies (WPBs) that contain angiopoietin-2, which is important in the pathogenesis of acute respiratory distress syndrome (ARDS) by increasing capillary permeability and von Willebrand factor (VWF), which mediates platelet adhesion to the endothelium and hence clotting. Angiopoietin-2 and VWF levels both are markedly elevated in COVID-19–associated ARDS. This paper offers an explanation for the sex differences in SARS-CoV-2 complications and also for why these are strongly associated with age, race, diabetes, and body mass index. It also explains why individuals with blood group A have a higher risk of severe infection than those with blood group O. Dexamethasone has been shown to be of benefit in coronavirus ARDS patients and has been thought to act as an anti-inflammatory drug. This paper suggests that a major part of its effect may be due to suppression of cortisol secretion. There is an urgent need to trial the combination of dexamethasone and an MR antagonist such as spironolactone to more effectively block the MR and hence the exocytosis of WPBs.


Sign in / Sign up

Export Citation Format

Share Document