scholarly journals Progress in the purification of the cholinergic receptor protein from Electrophorus electricus by affinity chromatography

FEBS Letters ◽  
1972 ◽  
Vol 28 (1) ◽  
pp. 96-100 ◽  
Author(s):  
Richard W. Olsen ◽  
Jean-Claude Meunier ◽  
Jean-Pierre Changeux
1978 ◽  
Vol 79 (1) ◽  
pp. 200-216 ◽  
Author(s):  
J P Bourgeois ◽  
J L Popot ◽  
A Ryter ◽  
J P Changeux

Electroplaques dissected from the electric organ of Electrophorus electricus are labeled by tritiated alpha1-isotoxin from Naja nigricollis, a highly selective reagent of the cholinergic (nicotinic) receptor site. Preincubation of the cell with an excess of unlabeled alpha-toxin and with a covalent affinity reagent or labeling in the presence of 10(-4) M decamethonium reduces the binding of [3H]alpha-toxin by at least 75%. Absolute surface densities of alpha-toxin sites are estimated by high-resolution autoradiography on the basis of silver grain distribution and taking into account the complex geopmetry of the cell surface. Binding of [3H]alpha-toxin on the noninnervated face does not differ from background. Labeled sites are observed on the innervated membrane both between the synapses and under the nerve terminals but the density of sites is approx. 100 times higher at the level of the synapses than in between. Analysis of the distance of silver grains from the innervated membrane shows a symmetrical distribution centered on the postsynaptic plasma membrane under the nerve terminal. In extrasynaptic areas, the barycenter of the distribution lies approximately 0.5 micrometer inside the cell, indicating that alpha-toxin sites are present on the membrane of microinvaginations, or caveolae, abundant in the extrajunctional areas. An absolute density of 49,600 +/- 16,000 sites/micrometer2 of postsynaptic membrane is calculated; it is in the range of that found at the crest of the folds at the neuromuscular junction and expected from a close packing of receptor molecules. Electric organs were denervated for periods up to 142 days. Nerve transmission fails after 2 days, and within a week all the nerve terminals disappear and are subsequently replaced by Schwann cell processes, whereas the morphology of the electroplaque remains unaffected. The denervated electroplaque develops some of the electrophysiological changes found with denervated muscles (increases of membrane resting resistance, decrease of electrical excitability) but does not become hypersensitive to cholinergic agonists. Autoradiography of electroplaques dissected from denervated electric organs reveals, after labeling with [3H]alpha-toxin, patches of silver grains with a surface density close to that found in the normal electroplaque. The density of alpha-toxin binding sites in extrasynaptic areas remains close to that observed on innervated cells, confirming that denervation does not cause an increase in the number of cholinergic receptor sites. The patches have the same distribution, shape,and dimensions as in subneural areas of the normal electroplaque, and remnants of nerve terminal or Schwann cells are often found at the level of the patches. They most likely correspond to subsynaptic areas which persist with the same density of [3H]alpha-toxin sites up to 52 days after denervation. In the adult synapse, therefore, the receptor protein exhibits little if any tendency for lateral diffusion.


FEBS Letters ◽  
1973 ◽  
Vol 35 (1) ◽  
pp. 124-128 ◽  
Author(s):  
Hiroyuki Sugiyama ◽  
Philippe Benda ◽  
Jean-Claude Meunier ◽  
Jean-Pierre Changeux

Blood ◽  
1996 ◽  
Vol 87 (3) ◽  
pp. 926-937 ◽  
Author(s):  
JL Spivak ◽  
LS Avedissian ◽  
JH Pierce ◽  
D Williams ◽  
WD Hankins ◽  
...  

The full-length murine erythropoietin receptor was expressed in Spodoptera frugiperda (Sf9) cells using a recombinant baculovirus vector. Erythropoietin receptor protein production was maximal 48 hours after infection, as determined by metabolic labeling and immunoblotting; receptor protein varied in molecular mass from 62 to 76 kD. Erythropoietin receptors produced in Sf9 cells could be solubilized using CHAPS in a form capable of binding erythropoietin, and the solubilized receptor bound to immobilized Concanavalin A (Con A) and wheat germ agglutinin, as well as to immobilized recombinant human erythropoietin. Analysis of the distribution of erythropoietin receptors in Sf9 plasma membrane and cytosol fractions using lectin affinity chromatography revealed that membrane-bound receptor had a higher apparent molecular mass and contained the bulk of receptors that bound to wheat germ agglutinin. The receptor was purified by sequential affinity chromatography on Con A-Sepharose and immobilized erythropoietin. Erythropoietin receptors expressed in Sf9 cells were inserted into the plasma membrane in the correct orientation, bound 125I-erythropoietin with a single affinity (kD, 330 pmol/L), and were internalized after ligand binding. However, kD varied inversely with the number of cell surface receptors. Solubilized erythropoietin receptors in whole-cell lysates and isolated plasma membranes exhibited high-affinity binding, with kD values of 92 and 57 pmol/L, respectively. Erythropoietin bound to the surface of infected Sf9 cells could be cross-linked to two proteins with molecular masses of 90 and 65 kD using the homobifunctional cross-linker, disuccinimidyl suberate (DSS). Similar results were obtained with solubilized receptors in whole-cell lysates, and both proteins could be immunoprecipitated by an antiserum to the erythropoietin receptor carboxyl-terminal domain.


FEBS Letters ◽  
1971 ◽  
Vol 16 (2) ◽  
pp. 92-94 ◽  
Author(s):  
J.P. Bourgeois ◽  
S. Tsuji ◽  
P. Boquet ◽  
J. Pillot ◽  
A. Ryter ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document