A power-function creep analysis for rotating solid disks having variable thickness and temperature

1964 ◽  
Vol 277 (6) ◽  
pp. 593-612 ◽  
Author(s):  
B.M. Ma
2015 ◽  
Vol 65 (2) ◽  
pp. 163-170 ◽  
Author(s):  
Kishore Khanna ◽  
V. K. Gupta ◽  
S. P. Nigam

2018 ◽  
Vol 10 (01) ◽  
pp. 1850008 ◽  
Author(s):  
Mosayeb Davoudi Kashkoli ◽  
Khosro Naderan Tahan ◽  
Mohammad Zamani Nejad

In the present study, a theoretical solution for thermomechanical creep analysis of functionally graded (FG) thick cylindrical pressure vessel with variable thickness based on the first-order shear deformation theory (FSDT) and multilayer method (MLM) is presented. To the best of the researchers’ knowledge, in the literature, there is no study carried out into FSDT and MLM for creep response of cylindrical pressure vessels with variable thickness under thermal and mechanical loadings. The vessel is subjected to a temperature gradient and nonuniform internal pressure. All mechanical and thermal properties except Poisson’s ratio are assumed to vary along the thickness direction based on a power-law function. The thermomechanical creep response of the material is described by Norton’s law. The virtual work principle is applied to extract the nonhomogeneous differential equations system with variable coefficients. Using the MLM, this differential equations system is converted into a system of differential equations with constant coefficients. These set of differential equations are solved analytically by applying boundary and continuity conditions between the layers. In order to verify the results of this study, the finite element method (FEM) has been used and according to the results, good agreement has been achieved. It can be concluded that the temperature gradient has significant influence on the creep responses of FG thick cylindrical pressure vessel.


2019 ◽  
Vol 11 (09) ◽  
pp. 1950086
Author(s):  
Tahereh Taghizadeh ◽  
Mohammad Zamani Nejad ◽  
Mosayeb Davoudi Kashkoli

A semi-analytical method is presented to investigate time-dependent thermo-elastic creep behavior and life assessment of thick truncated conical shells with variable thickness subjected to internal pressure and thermal load. Based on the first-order shear deformation theory (FSDT), equilibrium equations and boundary conditions are derived using the minimum total potential energy principle. To the best of the researcher’s knowledge, in previous studies, thermo-elastic creep analysis of conical shell with variable thickness based on the FSDT has not been investigated. Norton’s law is assumed as the material creep constitutive model. The multilayered method is proposed to solve the resulting equations, which yields an accurate solution. Subsequently, the stresses at different creep times can be obtained by means of an iterative approach. Using Robinson’s linear life fraction damage rule, the creep damages of conical shells are determined and Larson–Miller parameter (LMP) is employed for assessing the remaining life. The results of the proposed approach are validated with those of the finite element method (FEM) and good agreement was found. The results indicate that the present analysis is accurate and computationally efficient.


Sign in / Sign up

Export Citation Format

Share Document