In-situ density determination by means of underground cosmic-ray intensity measurements a theoretical study

1978 ◽  
Vol 16 (4) ◽  
pp. 318
Author(s):  
Lennart Malmqvist ◽  
Gilbert Jönsson ◽  
Krister Kristiansson
1968 ◽  
Vol 46 (10) ◽  
pp. S839-S843 ◽  
Author(s):  
G. Cini-Castagnoli ◽  
M. A. Dodero ◽  
L. Andreis

Cosmic-ray intensity measurements have been carried out during the last year at a depth of 70 m.w.e. in the Monte dei Cappuccini laboratory in Torino, using solid vertical semicubical scintillator telescopes with a total area of 2 m2. Hourly data for 245 days corrected for barometric changes have been analyzed for the solar, apparent sidereal, and antisidereal daily variations whose harmonics are as follows:[Formula: see text]The true sidereal diurnal variation is estimated to have an amplitude of 0.019% with a time of maximum at 1720 h local sidereal time. The solar diurnal variation at different depths underground follows the energy dependence calculated with Axford's theory. The solar semidiurnal variation shows instead a fairly constant value at different μ energies. Its order of magnitude agrees with that expected as a result of Fermi acceleration in collisions of primaries moving in roughly solar and antisolar directions with solar wind inhomogeneities.


1933 ◽  
Vol 44 (1) ◽  
pp. 4-11 ◽  
Author(s):  
Lewis M. Mott-Smith ◽  
Lynn G. Howell

1932 ◽  
Vol 42 (2) ◽  
pp. 314-316 ◽  
Author(s):  
L. M. Mott-Smith ◽  
L. G. Howell

1964 ◽  
Vol 32 (6) ◽  
pp. 1505-1523 ◽  
Author(s):  
S. Miyake ◽  
V. S. Narasimham ◽  
P. V. Ramana Murthy

Geophysics ◽  
1979 ◽  
Vol 44 (9) ◽  
pp. 1549-1569 ◽  
Author(s):  
L. Malmqvist ◽  
G. Jönsson ◽  
K. Kristiansson ◽  
L. Jacobsson

The feasibility of in‐situ rock density determinations by means of subsurface cosmic‐ray muon intensity measurements is based on theoretical calculations for two hypothetical scintillation counter telescopes: one is intended for registration in a gallery and the other is intended for use in narrow boreholes. It is shown that it is possible to measure the mean density of the rock traversed by the muons by measuring the muon intensity. The sensitivity of the method is favorable—a 1 percent change in mean rock density corresponds to a change of about 3 percent in the counting rate. A possible use of cosmic‐ray muon technique is the localization of an anomalous density distribution in overlying rock. A characteristic minimum registration time to detect a certain density anomaly varies from a few hours to about 10 days, depending on the geologic situation and the depth and design of the detector. The device is found to be most applicable for massive sulfide and iron exploration. This tecnique provides some new possibilities. A certain spatial resolution can be achieved at the expense of the registration time, and the overlying rock can, to some extent, be investigated in different directions from one point of observation. The method seems to be useful down to depths of approximately 600 m for the gallery application and 400 m for the borehole application. However, these limits are a consequence of the size of the detector, the size and density contrast of the target, and the maximum registration time accepted for each observation.


Author(s):  
Philip F Hopkins ◽  
T K Chan ◽  
Suoqing Ji ◽  
Cameron B Hummels ◽  
Dušan Kereš ◽  
...  

Abstract We study the effects of cosmic rays (CRs) on outflows from star-forming galaxies in the circum and inter-galactic medium (CGM/IGM), in high-resolution, fully-cosmological FIRE-2 simulations (accounting for mechanical and radiative stellar feedback, magnetic fields, anisotropic conduction/viscosity/CR diffusion and streaming, and CR losses). We showed previously that massive (Mhalo ≳ 1011 M⊙), low-redshift (z ≲ 1 − 2) halos can have CR pressure dominate over thermal CGM pressure and balance gravity, giving rise to a cooler CGM with an equilibrium density profile. This dramatically alters outflows. Absent CRs, high gas thermal pressure in massive halos “traps” galactic outflows near the disk, so they recycle. With CRs injected in supernovae as modeled here, the low-pressure halo allows “escape” and CR pressure gradients continuously accelerate this material well into the IGM in “fast” outflows, while lower-density gas at large radii is accelerated in-situ into “slow” outflows that extend to >Mpc scales. CGM/IGM outflow morphologies are radically altered: they become mostly volume-filling (with inflow in a thin mid-plane layer) and coherently biconical from the disk to >Mpc. The CR-driven outflows are primarily cool (T ∼ 105 K) and low-velocity. All of these effects weaken and eventually vanish at lower halo masses (≲ 1011 M⊙) or higher redshifts (z ≳ 1 − 2), reflecting the ratio of CR to thermal+gravitational pressure in the outer halo. We present a simple analytic model which explains all of the above phenomena. We caution that these predictions may depend on uncertain CR transport physics.


Sign in / Sign up

Export Citation Format

Share Document