halo masses
Recently Published Documents


TOTAL DOCUMENTS

128
(FIVE YEARS 75)

H-INDEX

19
(FIVE YEARS 9)

2021 ◽  
Vol 923 (2) ◽  
pp. 154
Author(s):  
Jeremy L. Tinker

Abstract We apply a new galaxy group-finder to the Main Galaxy Sample of the SDSS. This algorithm introduces new freedom to assign halos to galaxies that is self-calibrated by comparing the catalog to complementary data. These include galaxy clustering data and measurements of the total satellite luminosity from deep-imaging data. We present constraints on the galaxy-halo connection for star-forming and quiescent populations. The results of the self-calibrated group catalog differ in several key ways from previous group catalogs and halo-occupation analyses. The transition halo mass scale, where half of the halos contain quiescent central galaxies, is at M h ∼ 1012.4 h −1 M ⊙, significantly higher than other constraints. Additionally, the width of the transition from predominantly star-forming halos to quiescent halos occurs over a narrower range in halo mass. Quiescent central galaxies in low-mass halos are significantly more massive than star-forming centrals at the same halo mass, but this difference reverses above the transition halo mass. We find that the scatter in log M * at fixed M h is ∼0.2 dex for massive halos, in agreement with previous estimates, but rises sharply at lower halo masses. The halo masses assigned by the group catalog are in good agreement with weak-lensing estimates for star-forming and quiescent central galaxies. We discuss possible improvements to the algorithm made clear by this first application to data. The group catalog is made publicly available.


2021 ◽  
Vol 923 (1) ◽  
pp. 35
Author(s):  
Ferah Munshi ◽  
Alyson M. Brooks ◽  
Elaad Applebaum ◽  
Charlotte R. Christensen ◽  
T. Quinn ◽  
...  

Abstract We predict the stellar mass–halo mass (SMHM) relationship for dwarf galaxies, using simulated galaxies with peak halo masses of M peak = 1011 M ⊙ down into the ultra-faint dwarf range to M peak = 107 M ⊙. Our simulated dwarfs have stellar masses of M star = 790 M ⊙ to 8.2 × 108 M ⊙, with corresponding V-band magnitudes from −2 to −18.5. For M peak > 1010 M ⊙, the simulated SMHM relationship agrees with literature determinations, including exhibiting a small scatter of 0.3 dex. However, the scatter in the SMHM relation increases for lower-mass halos. We first present results for well-resolved halos that contain a simulated stellar population, but recognize that whether a halo hosts a galaxy is inherently mass resolution dependent. We thus adopt a probabilistic model to populate “dark” halos below our resolution limit to predict an “intrinsic” slope and scatter for the SMHM relation. We fit linearly growing log-normal scatter in stellar mass, which grows to more than 1 dex at M peak = 108 M ⊙. At the faintest end of the SMHM relation probed by our simulations, a galaxy cannot be assigned a unique halo mass based solely on its luminosity. Instead, we provide a formula to stochastically populate low-mass halos following our results. Finally, we show that our growing log-normal scatter steepens the faint-end slope of the predicted stellar mass function.


2021 ◽  
Vol 922 (2) ◽  
pp. 162
Author(s):  
Weiwei Xu ◽  
Huanyuan Shan ◽  
Ran Li ◽  
Chunxiang Wang ◽  
Linhua Jiang ◽  
...  

Abstract The concentration–mass (c–M) relation encodes key information about the assembly history of dark matter halos. However, its behavior at the high mass end has not been measured precisely in observations yet. In this paper, we report the measurement of the halo c–M relation with the galaxy–galaxy lensing method, using the shear catalog of the Dark Energy Camera Legacy Survey (DECaLS) Data Release 8, which covers a sky area of 9500 deg2. The foreground lenses are selected from the redMaPPer, LOWZ, and CMASS catalogs, with halo masses ranging from 1013 to 1015 M ⊙ and redshifts ranging from z = 0.08 to z = 0.65. We find that the concentration decreases with the halo mass from 1013 to 1014 M ⊙, but shows a trend of upturn after the pivot point of ∼1014 M ⊙. We fit the measured c–M relation with the concentration model c ( M ) = C 0 M 10 12 M ⊙ / h − γ 1 + M M 0 0.4 , and we get the values (C 0, γ, log10(M 0)) = (5.119−0.185 0.183, 0.205 − 0.010 0.010 , 14.083 − 0.133 0.130 ) and ( 4.875 − 0.208 0.209 , 0.221 − 0.010 0.010 , 13.750 − 0.141 0.142 ) for halos with 0.08 ≤ z < 0.35 and 0.35 ≤ z < 0.65, respectively. We also show that the model including an upturn is favored over a simple power-law model. Our measurement provides important information for the recent argument over the massive cluster formation process.


2021 ◽  
Vol 922 (1) ◽  
pp. 89
Author(s):  
Masato Shirasaki ◽  
Tomoaki Ishiyama ◽  
Shin’ichiro Ando

Abstract We study halo mass functions with high-resolution N-body simulations under a ΛCDM cosmology. Our simulations adopt the cosmological model that is consistent with recent measurements of the cosmic microwave backgrounds with the Planck satellite. We calibrate the halo mass functions for 108.5 ≲ M vir/(h −1 M ⊙) ≲ 1015.0–0.45 z , where M vir is the virial spherical-overdensity mass and redshift z ranges from 0 to 7. The halo mass function in our simulations can be fitted by a four-parameter model over a wide range of halo masses and redshifts, while we require some redshift evolution of the fitting parameters. Our new fitting formula of the mass function has a 5%-level precision, except for the highest masses at z ≤ 7. Our model predicts that the analytic prediction in Sheth & Tormen would overestimate the halo abundance at z = 6 with M vir = 108.5–10 h −1 M ⊙ by 20%–30%. Our calibrated halo mass function provides a baseline model to constrain warm dark matter (WDM) by high-z galaxy number counts. We compare a cumulative luminosity function of galaxies at z = 6 with the total halo abundance based on our model and a recently proposed WDM correction. We find that WDM with its mass lighter than 2.71 keV is incompatible with the observed galaxy number density at a 2σ confidence level.


Author(s):  
Maria Werhahn ◽  
Christoph Pfrommer ◽  
Philipp Girichidis

Abstract An extinction-free estimator of the star-formation rate (SFR) of galaxies is critical for understanding the high-redshift universe. To this end, the nearly linear, tight correlation of far-infrared (FIR) and radio luminosity of star-forming galaxies is widely used. While the FIR is linked to massive star formation, which also generates shock-accelerated cosmic ray (CR) electrons and radio synchrotron emission, a detailed understanding of the underlying physics is still lacking. Hence, we perform three-dimensional magneto-hydrodynamical (MHD) simulations of isolated galaxies over a broad range of halo masses and SFRs using the moving-mesh code Arepo, and evolve the CR proton energy density self-consistently. In post-processing, we calculate the steady-state spectra of primary, shock-accelerated and secondary CR electrons, which result from hadronic CR proton interactions with the interstellar medium. The resulting total radio luminosities correlate with the FIR luminosities as observed and are dominated by primary CR electrons if we account for anisotropic CR diffusion. The increasing contribution of secondary emission up to 30 per cent in starbursts is compensated by the larger bremsstrahlung and Coulomb losses. CR electrons are in the calorimetric limit and lose most of their energy through inverse Compton interactions with star-light and cosmic microwave background (CMB) photons while less energy is converted to synchrotron emission. This implies steep steady-state synchrotron spectra in starbursts. Interestingly, we find that thermal free–free emission flattens the total radio spectra at high radio frequencies and reconciles calorimetric theory with observations while free–free absorption explains the observed low-frequency flattening towards the central regions of starbursts.


Author(s):  
Elizabeth J Gonzalez ◽  
Facundo Rodriguez ◽  
Manuel Merchán ◽  
Diego García Lambas ◽  
Martín Makler ◽  
...  

Abstract Galaxy group masses are important to relate these systems with the dark matter halo hosts. However, deriving accurate mass estimates is particularly challenging for low-mass galaxy groups. Moreover, calibration of observational mass-proxies using weak-lensing estimates have been mainly focused on massive clusters. We present here a study of halo masses for a sample of galaxy groups identified according to a spectroscopic catalogue, spanning a wide mass range. The main motivation of our analysis is to assess mass estimates provided by the galaxy group catalogue derived through an abundance matching luminosity technique. We derive total halo mass estimates according to a stacking weak-lensing analysis. Our study allows to test the accuracy of mass estimates based on this technique as a proxy for the halo masses of large group samples. Lensing profiles are computed combining the groups in different bins of abundance matching mass, richness and redshift. Fitted lensing masses correlate with the masses obtained from abundance matching. However, when considering groups in the low- and intermediate-mass ranges, masses computed according to the characteristic group luminosity tend to predict higher values than the determined by the weak-lensing analysis. The agreement improves for the low-mass range if the groups selected have a central early-type galaxy. Presented results validate the use of mass estimates based on abundance matching techniques which provide good proxies to the halo host mass in a wide mass range.


Author(s):  
Aaron Wilkinson ◽  
Omar Almaini ◽  
Vivienne Wild ◽  
David Maltby ◽  
William G Hartley ◽  
...  

Abstract We present the first study of the large-scale clustering of post-starburst (PSB) galaxies in the high redshift Universe (0.5 &lt; z &lt; 3.0). We select ∼4000 PSB galaxies photometrically, the largest high-redshift sample of this kind, from two deep large-scale near-infrared surveys: the UKIDSS Ultra Deep Survey (UDS) DR11 and the Cosmic Evolution Survey (COSMOS). Using angular cross-correlation techniques, we estimate the halo masses for this large sample of PSB galaxies and compare them with quiescent and star-forming galaxies selected in the same fields. We find that low-mass, low-redshift (0.5 &lt; z &lt; 1.0) PSB galaxies preferentially reside in very high-mass dark matter haloes (Mhalo &gt; 1014 M⊙), suggesting they are likely to be infalling satellite galaxies in cluster-like environments. High-mass PSB galaxies are more weakly clustered at low redshifts, but they reside in higher mass haloes with increasing look-back time, suggesting strong redshift-dependent halo downsizing. These key results are consistent with previous results suggesting that two main channels are responsible for the rapid quenching of galaxies. While high-redshift (z &gt; 1) galaxies appear to be quenched by secular feedback mechanisms, processes associated with dense environments are likely to be the key driver of rapid quenching in the low-redshift Universe (z &lt; 1). Finally, we show that the clustering of photometrically selected PSBs are consistent with them being direct descendants of highly dust-enshrouded sub-millimetre galaxies (SMGs), providing tantalising evidence for the oft-speculated evolutionary pathway from starburst to quiescence.


Author(s):  
S M Stach ◽  
I Smail ◽  
A Amvrosiadis ◽  
A M Swinbank ◽  
U Dudzevičiūtė ◽  
...  

Abstract We present an analysis of the spatial clustering of a large sample of high-resolution, interferometically identified, submillimetre galaxies (SMGs). We measure the projected cross-correlation function of ∼ 350 SMGs in the UKIDSS Ultra Deep-Survey Field across a redshift range of z = 1.5–3 utilising a method that incorporates the uncertainties in the redshift measurements for both the SMGs and cross-correlated galaxies through sampling their full probability distribution functions. By measuring the absolute linear bias of the SMGs we derive halo masses of $\log _{10}(M_{\rm halo}[{h^{-1}\, \rm M_{\odot }}])$ ∼ 12.8 with no evidence of evolution in the halo masses with redshift, contrary to some previous work. From considering models of halo mass growth rates we predict that the SMGs will reside in haloes of mass $\log _{10}(M_{\rm halo}[{h^{-1}\, \rm M_{\odot }}])$ ∼ 13.2 at z = 0, consistent with the expectation that the majority of z = 1.5–3 SMGs will evolve into present-day spheroidal galaxies. Finally, comparing to models of stellar-to-halo mass ratios, we show that SMGs may correspond to systems that are maximally efficient at converting their gas reservoirs into stars. We compare them to a simple model for gas cooling in halos that suggests that the unique properties of the SMG population, including their high levels of star-formation and their redshift distribution, are a result of the SMGs being the most massive galaxies that are still able to accrete cool gas from their surrounding intragalactic medium.


Author(s):  
Alexandres Lazar ◽  
James S Bullock ◽  
Michael Boylan-Kolchin ◽  
Robert Feldmann ◽  
Onur Çatmabacak ◽  
...  

Abstract A promising route for revealing the existence of dark matter structures on mass scales smaller than the faintest galaxies is through their effect on strong gravitational lenses. We examine the role of local, lens-proximate clustering in boosting the lensing probability relative to contributions from substructure and unclustered line-of-sight (LOS) haloes. Using two cosmological simulations that can resolve halo masses of Mhalo ≃ 109 M⊙ (in a simulation box of length Lbox ∼ 100 Mpc) and 107 M⊙ (Lbox ∼ 20 Mpc), we demonstrate that clustering in the vicinity of the lens host produces a clear enhancement relative to an assumption of unclustered haloes that persists to &gt;20 Rvir. This enhancement exceeds estimates that use a two-halo term to account for clustering, particularly within 2 − 5 Rvir. We provide an analytic expression for this excess, clustered contribution. We find that local clustering boosts the expected count of 109 M⊙ perturbing haloes by ${\sim }35{{\ \rm per\ cent}}$ compared to substructure alone, a result that will significantly enhance expected signals for low-redshift (zl ≃ 0.2) lenses, where substructure contributes substantially compared to LOS haloes. We also find that the orientation of the lens with respect to the line of sight (e.g. whether the line of sight passes through the major axis of the lens) can also have a significant effect on the lensing signal, boosting counts by an additional $\sim 50{{\ \rm per\ cent}}$ compared to a random orientations. This could be important if discovered lenses are biased to be oriented along their principal axis.


Author(s):  
Punyakoti Ganeshaiah Veena ◽  
Marius Cautun ◽  
Rien van de Weygaert ◽  
Elmo Tempel ◽  
Carlos S Frenk

Abstract We explore the evolution of halo spins in the cosmic web using a very large sample of dark matter haloes in the ΛCDM Planck-Millennium N-body simulation. We use the nexus+ multiscale formalism to identify the hierarchy of filaments and sheets of the cosmic web at several redshifts. We find that at all times the magnitude of halo spins correlates with the web environment, being largest in filaments, and, for the first time, we show that it also correlates with filament thickness as well as the angle between spin-orientation and the spine of the host filament. For example, massive haloes in thick filaments spin faster than their counterparts in thin filaments, while for low-mass haloes the reverse is true. We also have studied the evolution of alignment between halo spin orientations and the preferential axes of filaments and sheets. The alignment varies with halo mass, with the spins of low-mass haloes being predominantly along the filament spine, while those of high-mass haloes being predominantly perpendicular to the filament spine. On average, for all halo masses, halo spins become more perpendicular to the filament spine at later times. At all redshifts, the spin alignment shows a considerable variation with filament thickness, with the halo mass corresponding to the transition from parallel to perpendicular alignment varying by more than one order of magnitude. The cosmic web environmental dependence of halo spin magnitude shows little evolution for z ≤ 2 and is likely a consequence of the correlations in the initial conditions or high redshift effects.


Sign in / Sign up

Export Citation Format

Share Document