Temperature dependence of the water-ice spectrum between 1 and 4 microns: Application to Europa, Ganymede and Saturn's rings

Icarus ◽  
1975 ◽  
Vol 24 (4) ◽  
pp. 411-420 ◽  
Author(s):  
Uwe Fink ◽  
Harold P. Larson
1984 ◽  
Vol 75 ◽  
pp. 211-217 ◽  
Author(s):  
Jeffrey N. Cuzzi

A review is given of important features of the rings, touching only lightly on aspects covered by other speakers (Spokes, E ring). This extended abstract will only convey the high points of the talk.Most of the material in Saturn's rings is concentrated in the B ring, with a lesser amount in the A ring and only small amounts in the C ring and Cassini Division. There is a very different character to these classical ring regions; the C and Cassini particles are darker and more neutral in color; (Smith et al. 1981, 1982). The A and B regions contain nearly all of the “small” particles, from microns to millimeters. Overall, however, the particles are fairly well characterized by Voyager radio occultation results as roughly following an r-3powerlaw between about 1 cm and a few meters (Tyler et al. 1982, Marouf et al. 1982). A fairly sharp cutoff in the size distribution is seen at radii varying with location from about 1 to about 5 meters. The material of the ring particles is probably mostly water ice (see e.g., Pollack 1975) but the redness of the rings requires the presence of minor constitutents. Combinations of ground-based radar and radio emission observations (Pollack 1975, Cuzzi and Pollack 1978; Pettengill, this issue) strongly indicate that the non-icy component comprises a small fraction of the total bulk material. In fact, mass densities derived from density waves (e.g. Holberg et al. 1982) and CRAND measurements (Cooper et al. 1982) combined with Voyager particle size measurements indicate a particle density more like that of snow or frost than that of pure ice.


2015 ◽  
Vol 112 (31) ◽  
pp. 9536-9541 ◽  
Author(s):  
Nikolai Brilliantov ◽  
P. L. Krapivsky ◽  
Anna Bodrova ◽  
Frank Spahn ◽  
Hisao Hayakawa ◽  
...  

Saturn’s rings consist of a huge number of water ice particles, with a tiny addition of rocky material. They form a flat disk, as the result of an interplay of angular momentum conservation and the steady loss of energy in dissipative interparticle collisions. For particles in the size range from a few centimeters to a few meters, a power-law distribution of radii, ∼r−q with q≈3, has been inferred; for larger sizes, the distribution has a steep cutoff. It has been suggested that this size distribution may arise from a balance between aggregation and fragmentation of ring particles, yet neither the power-law dependence nor the upper size cutoff have been established on theoretical grounds. Here we propose a model for the particle size distribution that quantitatively explains the observations. In accordance with data, our model predicts the exponent q to be constrained to the interval 2.75≤q≤3.5. Also an exponential cutoff for larger particle sizes establishes naturally with the cutoff radius being set by the relative frequency of aggregating and disruptive collisions. This cutoff is much smaller than the typical scale of microstructures seen in Saturn’s rings.


1984 ◽  
Vol 75 ◽  
pp. 263
Author(s):  
J.B. Holbelg

During the Voyager 1 and 2 Saturn encounters the Voyager ultraviolet spectrometers (UVS) made numerous observations of Saturn's rings in the extreme and far ultraviolet. HI Lyman a (1216 Å) observations of the rings from a number of different aspects are used to define the extent and density of the neutral hydrogen “atmosphere” associated with the rings. Voyager 2 observations of the 520 to 1700 Å spectrum of the rings (~20 Å resolution) are used to derive the albedo of particles in the B ring at these wavelengths. These albedo measurements are compared with the laboratory reflectance spectrum of water ice longward of 1200 Å. The significance of the lack of ring reflectance in the Voyager 1 UVS data is also discussed. Finally, UVS spectra of the rings obtained in Saturn's shadow are used to establish upper limits on the presence of any emission from the neutral and ionic states of oxygen possibly associated with the Saturn electrostatic discharges (SED) discovered by the Voyager Planetary Radio Astronomy experiment.


1984 ◽  
Vol 75 ◽  
pp. 407-422
Author(s):  
William K. Hartmann

ABSTRACTThe nature of collisions within ring systems is reviewed with emphasis on Saturn's rings. The particles may have coherent icy cores and less coherent granular or frosty surface layers, consistent with thermal eclipse observations. Present-day collisions of such ring particles do not cause catastrophic fragmentation of the particles, although some minor surface erosion and reaccretion is possible. Evolution by collisional fragmentation is thus not as important as in the asteroid belt.


1984 ◽  
Vol 75 ◽  
pp. 265-277
Author(s):  
J.B. Holbelg ◽  
W.T. Forrester

ABSTRACTDuring the Voyager 1 and 2 Saturn encounters the ultraviolet spectrometers observed three separate stellar occultations by Saturn's rings. Together these three observations, which sampled the optical depth of the rings at resolutions from 3 to 6 km. can be used to establish a highly accurate distance scale allowing the identification of numerous ring features associated with resonances due to exterior satellites. Three separate observations of an eccentric ringlet near the location of the Titan apsidal resonance are discussed along with other ringlet-resonance associations occurring in the C ring. Density waves occurring in the A and B rings are reviewed and a detailed discussion of the analysis of one of these features is presented.


Icarus ◽  
1986 ◽  
Vol 68 (1) ◽  
pp. 120-166 ◽  
Author(s):  
Essam A. Marouf ◽  
G. Leonard Tyler ◽  
Paul A. Rosen

Icarus ◽  
1973 ◽  
Vol 18 (2) ◽  
pp. 317-337 ◽  
Author(s):  
A.F. Cook ◽  
F.A. Franklin ◽  
F.D. Palluconi

Icarus ◽  
1986 ◽  
Vol 67 (3) ◽  
pp. 345-357 ◽  
Author(s):  
Larry W. Esposito

Sign in / Sign up

Export Citation Format

Share Document