surface erosion
Recently Published Documents


TOTAL DOCUMENTS

658
(FIVE YEARS 186)

H-INDEX

32
(FIVE YEARS 6)

Pharmaceutics ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 208
Author(s):  
Jan Lenz ◽  
Frederik Fuest ◽  
Jan Henrik Finke ◽  
Heike Bunjes ◽  
Arno Kwade ◽  
...  

Disintegration and dispersion are functional properties of tablets relevant for the desired API release. The standard disintegration test (SDT) described in different pharmacopoeias provides only limited information on these complex processes. It is considered not to be comparable to the biorelevant conditions due to the frequent occurrence of high hydrodynamic forces, among other reasons. In this study, 3D tomographic laser-induced fluorescence imaging (3D Tomo-LIF) is applied to analyse tablet disintegration and dispersion. Disintegration time (DT) and time-resolved particle size distribution in close proximity to the tablet are determined in a continuously operated flow channel, adjustable to very low fluid velocities. A case study on tablets of different porosity, which are composed of pharmaceutical polymers labelled with a fluorescent dye, a filler, and disintegrants, is presented to demonstrate the functionality and precision of the novel method. DT results from 3D Tomo-LIF are compared with results from the SDT, confirming the analytical limitations of the pharmacopoeial disintegration test. Results from the 3D Tomo-LIF method proved a strong impact of fluid velocity on disintegration and dispersion. Generally, shorter DTs were determined when cross-linked sodium carboxymethly cellulose (NaCMCXL) was used as disintegrant compared to polyvinyl polypyrrolidone (PVPP). Tablets containing Kollidon VA64 were found to disintegrate by surface erosion. The novel method provides an in-depth understanding of the functional behaviour of the tablet material, composition and structural properties under in vivo-like hydrodynamic forces regarding disintegration and the temporal progress of dispersion. We consider the 3D Tomo-LIF in vitro method to be of improved biorelevance in terms of hydrodynamic conditions in the human stomach.


Metals ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 138
Author(s):  
Dmitriy S. Fatyukhin ◽  
Ravil I. Nigmetzyanov ◽  
Vyacheslav M. Prikhodko ◽  
Aleksandr V. Sukhov ◽  
Sergey K. Sundukov

The ultrasonic treatment of metal products in liquid is used mainly to remove various kinds of contaminants from surfaces. The effects of ultrasound not only separate and remove contaminants, they also significantly impact the physical–mechanical and geometric properties of the surfaces of products if there is enough time for treatment. The aim of this study was to compare the dynamics of ultrasonic cavitation effects on the surface properties of 45 (ASTM M1044; DIN C45; GB 45) and 40Kh (AISI 5140; DIN 41Cr4; GB 40Cr) structural steels. During the study, changes in the structure, roughness, sub-roughness, and microhardness values of these materials were observed. The results showed significant changes in the considered characteristics. It was found that the process of cavitation erosion involves at least 3 stages. In the first stage, the geometric properties of the surface slightly change with the accumulation of internal stresses and an increase in microhardness. The second stage is characterized by structure refinement, increased roughness and sub-microroughness, and the development of surface erosion. In the third stage, when a certain limiting state is reached, there are no noticeable changes in the surface properties. The lengths of these stages and the quantitative characteristics of erosion for the considered materials differ significantly. It was found that the time required to reach the limiting state was longer for carbon steel than for alloy steel. The results can be used to improve the cleaning process, as well as to form the required surface properties of structural steels.


2022 ◽  
Author(s):  
Michael D. Kroells ◽  
Amal Sahai ◽  
Thomas E. Schwartzentruber

Molecules ◽  
2021 ◽  
Vol 26 (24) ◽  
pp. 7554
Author(s):  
Radhika Vaid ◽  
Erol Yildirim ◽  
Melissa A. Pasquinelli ◽  
Martin W. King

Polylactic acid (PLA) is a widely used bioresorbable polymer in medical devices owing to its biocompatibility, bioresorbability, and biodegradability. It is also considered a sustainable solution for a wide variety of other applications, including packaging. Because of its widespread use, there have been many studies evaluating this polymer. However, gaps still exist in our understanding of the hydrolytic degradation in extreme pH environments and its impact on physical and mechanical properties, especially in fibrous materials. The goal of this work is to explore the hydrolytic degradation of PLA fibers as a function of a wide range of pH values and exposure times. To complement the experimental measurements, molecular-level details were obtained using both molecular dynamics (MD) simulations with ReaxFF and density functional theory (DFT) calculations. The hydrolytic degradation of PLA fibers from both experiments and simulations was observed to have a faster rate of degradation in alkaline conditions, with 40% of strength loss of the fibers in just 25 days together with an increase in the percent crystallinity of the degraded samples. Additionally, surface erosion was observed in these PLA fibers, especially in extreme alkaline environments, in contrast to bulk erosion observed in molded PLA grafts and other materials, which is attributed to the increased crystallinity induced during the fiber spinning process. These results indicate that spun PLA fibers function in a predictable manner as a bioresorbable medical device when totally degraded at end-of-life in more alkaline conditions.


2021 ◽  
Author(s):  
Ijasini John Tekwa ◽  
Abubakar Musa Kundiri

Soil erosion is a severe degradation phenomena that has since received huge attention among earth scientists in the developed worlds, and same efforts are now extending to Africa and other parts of underdeveloped worlds. This chapter focuses on collation, analyzing and appraising of soil ero¬sion studies around Mubi region, Northeast Nigeria, where the Mandara mountain ranges is notably responsible for spurring soil erosion. This chapter reviewed reports on the: (a) Mubi regional soil properties, erosion processes and principles of their occurrence, (b) soil erosion predictions using empirical and physically-based models by researchers, and, (c) economicimplications and managements of soil erosion in the region. This chapter reveals that classical and rill/ephemeral gully (EG) erosion features received more research attention than surface erosion such as splash and sheet. No information was reported on effects of landslides/slumping noticeable along rivers/stream banks around the region. The few economic analysis reported for soil nutrient and sediments entrained by concentrated flow channels were very high and intolerable to the predominantly peasant farmers in the region. It is hoped that the considerable volumes of erosion researches and recommendations assembled in this chapter shall be carefully implemented by prospective farmers, organizations, and residents in the Mubi region.


2021 ◽  
pp. 944-951
Author(s):  
Somporn Chantra ◽  
Pareena Chaitanuwong ◽  
Kasem Seresirikachorm ◽  
Mitchell Brinks ◽  
Onsiri Serirat ◽  
...  

The purpose is to report ocular surface erosion of health personnel who were exposed to evaporated CoronaVac during a vaccination campaign. A campaign for CoronaVac vaccination was conducted in a closed space of 11.04 × 5.96 m, partially divided into 6 rooms with interconnected area among the rooms. A total of 20 health personnel worked in the vaccination rooms. On the third day of campaign, a vial, containing a single dose of 0.5 mL, of the vaccine was dropped accidentally onto the floor and broken by an administering nurse. A total of 15 personnel had symptoms and signs of ocular surface erosion at the average time from the accident to the onset of 10.2 ± 7.1 h; 4 personnel also had skin rash. These personnel included all 13 persons who already worked in the rooms when the accident occurred and continued for additional 4–6 h and 2 personnel who presented in the rooms 1–2 h after the accident and stayed for 2–3 h. Proximity and timing suggest CoronaVac correlation with the ocular and skin reactions. Cautions should be taken to avoid broken vials, spills, and aerosolization of CoronaVac during the vaccination.


2021 ◽  
Vol 294 ◽  
pp. 106387
Author(s):  
Yao-Jia Cheng ◽  
Chao-Sheng Tang ◽  
Xiao-Hua Pan ◽  
Bo Liu ◽  
Yue-Han Xie ◽  
...  

Coatings ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1448
Author(s):  
Xuan Zhang ◽  
Yuandong Chen ◽  
Wenqiao Zhang ◽  
Yanli Zhong ◽  
Pei Lei ◽  
...  

Transparent conductive films (TCFs) have received much research attention in the area of aeronautical canopies. However, bad wear, corrosion resistance and weak erosion performance of TCFs dramatically limit their scalable application in the next-generation aeronautical and optoelectronic devices. To address these drawbacks, three types of optically transparent coatings, including acrylic, silicone and polyurethane (PU) coatings were developed and comparatively investigated ex situ in terms of Taber abrasion, nanoindentation and sand erosion tests to improve the wear-resistance and sand erosion abilities of ITO-coated PMMA substrates. To elucidate the sand erosion failure of the coatings, the nanoindentation technique was employed for quantitative assessment of the shape recovery abilities under probe indentation. Results show that the PU topcoats can greatly enhance the sand erosion properties, which were superior to those of acrylic and silicone topcoats. This result can be attributed to the good toughness and self-healing properties of PU topcoats. Additionally, high hardness and good Taber abrasion properties of the ITO films and silicone topcoats did not have an obvious or affirmatory effect on the sand erosion abilities, based on their brittleness and irreparable properties under sand erosion.


2021 ◽  
Author(s):  
Yiran Wang ◽  
Michael E. Oskin

Abstract. We introduce a set of methods for analyzing cosmogenic-nuclide depth profiles that formally integrates surface erosion and muogenic production, while retaining the advantages of the linear inversion. For surfaces with erosion, we present solutions for both erosion rate and total eroded thickness, each with their own advantages. For practical applications, erosion must be constrained from external information, such as soil-profile analysis. By combining linear inversion with Monte Carlo simulation of error propagation, our method jointly assesses uncertainty arising from measurement error and erosion constraints. Using example depth profile data sets from the Beida River, northwest China and Lees Ferry, Arizona, we show that our methods robustly produce comparable ages for surfaces with different erosion rates and inheritance. Through hypothetical examples, we further show that both the erosion rate and eroded-thickness approaches produce reasonable age estimates so long as the total erosion less than twice the nucleon attenuation length. Overall, lack of precise constraints for erosion rate tends to be the largest contributor of age uncertainty, compared to the error from omitting muogenic production or radioactive decay.


Sign in / Sign up

Export Citation Format

Share Document