New linear time algorithms for generating perfect elimination orderings of chordal graphs

1996 ◽  
Vol 58 (3) ◽  
pp. 111-115 ◽  
Author(s):  
B.S. Panda
Author(s):  
Min-Sheng Lin

Counting dominating sets (DSs) in a graph is a #P-complete problem even for chordal bipartite graphs and split graphs, which are both subclasses of weakly chordal graphs. This paper investigates this problem for distance-hereditary graphs, which is another known subclass of weakly chordal graphs. This work develops linear-time algorithms for counting DSs and their two variants, total DSs and connected DSs in distance-hereditary graphs.


Author(s):  
Yuya Higashikawa ◽  
Naoki Katoh ◽  
Junichi Teruyama ◽  
Koji Watase

Algorithmica ◽  
2013 ◽  
Vol 71 (2) ◽  
pp. 471-495 ◽  
Author(s):  
Maw-Shang Chang ◽  
Ming-Tat Ko ◽  
Hsueh-I Lu

1996 ◽  
Vol 06 (01) ◽  
pp. 127-136 ◽  
Author(s):  
QIAN-PING GU ◽  
SHIETUNG PENG

In this paper, we give two linear time algorithms for node-to-node fault tolerant routing problem in n-dimensional hypercubes Hn and star graphs Gn. The first algorithm, given at most n−1 arbitrary fault nodes and two non-fault nodes s and t in Hn, finds a fault-free path s→t of length at most [Formula: see text] in O(n) time, where d(s, t) is the distance between s and t. Our second algorithm, given at most n−2 fault nodes and two non-fault nodes s and t in Gn, finds a fault-free path s→t of length at most d(Gn)+3 in O(n) time, where [Formula: see text] is the diameter of Gn. When the time efficiency of finding the routing path is more important than the length of the path, the algorithms in this paper are better than the previous ones.


Author(s):  
Amit Sharma ◽  
P. Venkata Subba Reddy

For a simple, undirected graph [Formula: see text], a function [Formula: see text] which satisfies the following conditions is called an outer-independent total Roman dominating function (OITRDF) of [Formula: see text] with weight [Formula: see text]. (C1) For all [Formula: see text] with [Formula: see text] there exists a vertex [Formula: see text] such that [Formula: see text] and [Formula: see text], (C2) The induced subgraph with vertex set [Formula: see text] has no isolated vertices and (C3) The induced subgraph with vertex set [Formula: see text] is independent. For a graph [Formula: see text], the smallest possible weight of an OITRDF of [Formula: see text] which is denoted by [Formula: see text], is known as the outer-independent total Roman domination number of [Formula: see text]. The problem of determining [Formula: see text] of a graph [Formula: see text] is called minimum outer-independent total Roman domination problem (MOITRDP). In this article, we show that the problem of deciding if [Formula: see text] has an OITRDF of weight at most [Formula: see text] for bipartite graphs and split graphs, a subclass of chordal graphs is NP-complete. We also show that MOITRDP is linear time solvable for connected threshold graphs and bounded treewidth graphs. Finally, we show that the domination and outer-independent total Roman domination problems are not equivalent in computational complexity aspects.


Sign in / Sign up

Export Citation Format

Share Document