Linear Time Algorithms on Chordal Bipartite and Strongly Chordal Graphs

Author(s):  
Ryuhei Uehara
Author(s):  
Min-Sheng Lin

Counting dominating sets (DSs) in a graph is a #P-complete problem even for chordal bipartite graphs and split graphs, which are both subclasses of weakly chordal graphs. This paper investigates this problem for distance-hereditary graphs, which is another known subclass of weakly chordal graphs. This work develops linear-time algorithms for counting DSs and their two variants, total DSs and connected DSs in distance-hereditary graphs.


1997 ◽  
Vol 99 (3-4) ◽  
pp. 173-182 ◽  
Author(s):  
Jou-Ming Chang ◽  
Chiun-Chieh Hsu ◽  
Yue-Li Wang ◽  
Ting-Yem Ho

Author(s):  
Yuya Higashikawa ◽  
Naoki Katoh ◽  
Junichi Teruyama ◽  
Koji Watase

Algorithmica ◽  
2013 ◽  
Vol 71 (2) ◽  
pp. 471-495 ◽  
Author(s):  
Maw-Shang Chang ◽  
Ming-Tat Ko ◽  
Hsueh-I Lu

1996 ◽  
Vol 06 (01) ◽  
pp. 127-136 ◽  
Author(s):  
QIAN-PING GU ◽  
SHIETUNG PENG

In this paper, we give two linear time algorithms for node-to-node fault tolerant routing problem in n-dimensional hypercubes Hn and star graphs Gn. The first algorithm, given at most n−1 arbitrary fault nodes and two non-fault nodes s and t in Hn, finds a fault-free path s→t of length at most [Formula: see text] in O(n) time, where d(s, t) is the distance between s and t. Our second algorithm, given at most n−2 fault nodes and two non-fault nodes s and t in Gn, finds a fault-free path s→t of length at most d(Gn)+3 in O(n) time, where [Formula: see text] is the diameter of Gn. When the time efficiency of finding the routing path is more important than the length of the path, the algorithms in this paper are better than the previous ones.


Sign in / Sign up

Export Citation Format

Share Document