scholarly journals Lower bounds to randomized algorithms for graph properties

1991 ◽  
Vol 42 (3) ◽  
pp. 267-287 ◽  
Author(s):  
Andrew Chi-Chih Yao
2012 ◽  
Vol 112 (17-18) ◽  
pp. 663-666
Author(s):  
Claire Mathieu ◽  
Olga Ohrimenko

2007 ◽  
Vol 30 (3) ◽  
pp. 427-440 ◽  
Author(s):  
Amit Chakrabarti ◽  
Subhash Khot

2011 ◽  
Vol 40 ◽  
pp. 57-93 ◽  
Author(s):  
H. Aziz ◽  
Y. Bachrach ◽  
E. Elkind ◽  
M. Paterson

Weighted voting is a classic model of cooperation among agents in decision-making domains. In such games, each player has a weight, and a coalition of players wins the game if its total weight meets or exceeds a given quota. A player's power in such games is usually not directly proportional to his weight, and is measured by a power index, the most prominent among which are the Shapley-Shubik index and the Banzhaf index.In this paper, we investigate by how much a player can change his power, as measured by the Shapley-Shubik index or the Banzhaf index, by means of a false-name manipulation, i.e., splitting his weight among two or more identities. For both indices, we provide upper and lower bounds on the effect of weight-splitting. We then show that checking whether a beneficial split exists is NP-hard, and discuss efficient algorithms for restricted cases of this problem, as well as randomized algorithms for the general case. We also provide an experimental evaluation of these algorithms. Finally, we examine related forms of manipulative behavior, such as annexation, where a player subsumes other players, or merging, where several players unite into one. We characterize the computational complexity of such manipulations and provide limits on their effects. For the Banzhaf index, we describe a new paradox, which we term the Annexation Non-monotonicity Paradox.


1994 ◽  
Vol 05 (01) ◽  
pp. 23-57 ◽  
Author(s):  
GERARD TEL

This paper analyses how the symmetry of a processor network influences the existence of a solution for the network orientation problem. The orientation of hypercubes and tori is the problem of assigning labels to each link of each processor, in such a way that a sense of direction is given to the network. In this paper the problem of network orientation for these two topologies is studied under the assumption that the network contains a single leader, under the assumption that the processors possess unique identities, and under the assumption that the network is anonymous. The distinction between these three models is considered fundamental in distributed computing. It is shown that orientations can be computed by deterministic algorithms only when either a leader or unique identities are available. Orientations can be computed for anonymous networks by randomized algorithms, but only when the number of processors is known. When the number of processors is not known, even randomized algorithms cannot compute orientations for anonymous processor networks. Lower bounds on the message complexity of orientation and algorithms achieving these bounds are given.


Sign in / Sign up

Export Citation Format

Share Document