Actions of phencyclidine and its thienylpyrrolidine analogue on synaptic transmission and axonal conduction in the central nervous system of the cockroach Periplaneta americana

1985 ◽  
Vol 31 (12) ◽  
pp. 917-924 ◽  
Author(s):  
D.B. Sattelle ◽  
B. Hue ◽  
M. Pelhate ◽  
S.M. Sherby ◽  
A.T. Eldefrawi ◽  
...  
1961 ◽  
Vol 38 (2) ◽  
pp. 315-322
Author(s):  
J. E. TREHERNE

1. The influx of sodium and potassium ions into the central nervous system of Periplaneta americana has been studied by measuring the increase in radioactivity within the abdominal nerve cord following the injection of 24NA and 42K. into the haemolymph. 2. The calculated influx of sodium ions was approximately 320 mM./l. of nerve cord water/hr. and of potassium ions was 312 mM./l. of nerve cord water/hr. These values are very approximately equivalent to an influx per unit area of nerve cord surface of 13.9 x 10-2 M cm. -2 sec.-1 for sodium and 13.5 x 10-12 M cm. -2 sec.-1 for potassium ions. 3. The relatively rapid influxes of these ions are discussed in relation to the postulated function of the nerve sheath as a diffusion barrier. It is suggested that a dynamic steady state rather than a static impermeability must exist across the sheath surrounding the central nervous system in this insect.


1962 ◽  
Vol 39 (3) ◽  
pp. 319-324
Author(s):  
K. G. DAVEY

1. Addition of a homogenate of corpora cardiaca to the fluid bathing an isolated hind gut of Periplaneta produces an increase in tonus, amplitude, frequency and co-ordination of contractions. 2. The corpus cardiacum acts by stimulating cells in the upper colon to release an indolalkylamine. 3. This amine acts on the mucles through a peripheral nervous system which can function in isolation from the central nervous system.


1976 ◽  
Vol 4 (3) ◽  
pp. 199-202 ◽  
Author(s):  
T. A. Torda ◽  
P. W. Gage

Thiopentone and pentobarbitone reduce the time constant of decay of miniature end-plate currents when applied in anaesthetic concentrations to the neuromuscular junction. Such an effect at central synapses would lead to failure of synaptic transmission in the central nervous system and may reflect a common mode of action of many anaesthetic drugs.


1958 ◽  
Vol 192 (3) ◽  
pp. 447-452 ◽  
Author(s):  
Sadayuki F. Takagi ◽  
Yutaka Oomura

The effect of nicotine on synaptic transmission in the frog and cat spinal cord was studied. Both a regular wick electrode and a microelectrode of the Ling-Gerard type were used. The reflex activity of the bullfrog spinal cord is facilitated by 0.01% nicotine solution, but is depressed and abolished by 0.1% solution. In the cat, intravenous administration of 150 mg/kg fails to block reflex activity, but topical application does block. The intracellular potential, of both frog and cat motoneurones, shows no change in the synaptic potential after application of the drug, but the spike appears after a shorter synaptic delay and one or more additional spikes appear. When the synaptic delay becomes sufficiently short, however, all spikes suddenly disappear, leaving the still unchanged synaptic potential. Occasionally the synaptic delay is again increased just before the spike potentials disappear. The excitability of a frog motoneurone was measured, by a recording microelectrode, before and after nicotine application. The drug first increased and then decreases excitability. Epinephrine can restore a reflex discharge depressed or abolished by nicotine. It is concluded that high concentrations of nicotine block synaptic transmission in the central nervous system, acting on the cell body but not on the synaptic potential.


Physiology ◽  
1996 ◽  
Vol 11 (4) ◽  
pp. 161-166
Author(s):  
H Ohmori

Hair cells transduce mechanical information into electrical signal and, via afferent synapse, transmit it to the central nervous system (CNS). Hair cells receive cholinergic efferent innervation from the CNS, and a long-lasting membrane hyperpolarization is produced by activation of Ca2+-activated K+ channels. Acetylcholine may facilitate afferent synaptic transmission by suppressing K+ channels on the afferent nerve terminal.


2010 ◽  
Vol 38 (6) ◽  
pp. 1527-1530 ◽  
Author(s):  
Joel D. Richter

Synapses, points of contact between axons and dendrites, are conduits for the flow of information in the circuitry of the central nervous system. The strength of synaptic transmission reflects the interconnectedness of the axons and dendrites at synapses; synaptic strength in turn is modified by the frequency with which the synapses are stimulated. This modulation of synaptic strength, or synaptic plasticity, probably forms the cellular basis for learning and memory. RNA metabolism, particularly translational control at or near the synapse, is one process that controls long-lasting synaptic plasticity and, by extension, memory formation and consolidation. In the present paper, I review some salient features of translational control of synaptic plasticity.


Sign in / Sign up

Export Citation Format

Share Document