the central nervous system
Recently Published Documents





Andreia Fuentes Santos ◽  
Marilia Moraes Queiroz Souza ◽  
Karoline Bach Pauli ◽  
Gustavo Ratti da Silva ◽  

Bacopa monnieri(L.) Wettst. (Plantaginaceae), also known as Brahmi, has been used to improve cognitive processes and intellectual functions that are related to the preservation of memory. The objective of this research is to review the ethnobotanical applications, phytochemical composition, toxicity and activity of B. monnieriin the central nervous system. It reviewed articles on B. monnieriusing Google Scholar, SciELO, Science Direct, Lilacs, Medline, and PubMed. Saponins are the main compounds in extracts of B. monnieri. Pharmacological studies showed that B. monnieriimproves learning and memory and presents biological effects against Alzheimer’s disease, Parkinson’s disease, epilepsy, and schizophrenia. No preclinical acute toxicity was reported. However, gastrointestinal side effects were reported in some healthy elderly individuals. Most studies with B. monnierihave been preclinical evaluations of cellular mechanisms in the central nervous system and further translational clinical research needs to be performed to evaluate the safety and efficacy of the plant.

2022 ◽  
Vol 62 ◽  
pp. 130-136
Steve S. Saitoh ◽  
Shogo Tanabe ◽  
Rieko Muramatsu

2022 ◽  
Vol 13 (1) ◽  
pp. 115-121
Gayane Kirakosyan ◽  
Alina Frolova

Psychosis is a group of psychotic disorders. Its manifestation depends on the specific type of functional violation. However, this is characterized by a gradual increase in clinical signs and a change in behavior. Symptoms of psychosis can be recognized by the following manifestations: hallucinations, delusional ideas, movement disorders, mood disorders including manic and depressive disorders and changes in emotional sphere. Psychosis occurs due to problems in the functioning of neurons. Due to the violation of bonds in the molecules, they do not receive nutrition and they are deficient in oxygen. This leads to the fact that neurons cannot transmit nerve impulses; multiple dysfunctions occur in the central nervous system. The type of psychosis depends on a part of the brain suffered from the hunger strike. The causes of this disorder are of 3 types: endogenous, associated with internal processes, exogenous or external and organic, when the causes of psychosis are changes in the brain such as tumors, trauma or hemorrhage. Psychosis is usually treated in a hospital setting. Such patients require urgent admission as they cannot control their actions, they can harm themselves and others. Psychosis is a relapse-prone disease. With timely and comprehensive treatment, the prognosis will be favorable. This review article is a good educational material for medical and psychological practitioners whose goal is to improve knowledge of treatment and rehabilitation processes of psychosis and its related disorders.

Science ◽  
2022 ◽  
Kjetil Bjornevik ◽  
Marianna Cortese ◽  
Brian C. Healy ◽  
Jens Kuhle ◽  
Michael J. Mina ◽  

Multiple sclerosis (MS) is a chronic inflammatory demyelinating disease of the central nervous system of unknown etiology. We tested the hypothesis that MS is caused by Epstein-Barr virus (EBV) in a cohort comprising more than 10 million young adults on active duty in the US military, 955 of whom were diagnosed with MS during their period of service. Risk of MS increased 32-fold after infection with EBV but was not increased after infection with other viruses, including the similarly transmitted cytomegalovirus. Serum levels of neurofilament light chain, a biomarker of neuroaxonal degeneration, increased only after EBV seroconversion. These findings cannot be explained by any known risk factor for MS and suggest EBV as the leading cause of MS.

2022 ◽  
Vol 12 ◽  
Toshiyuki Fujita ◽  
Naoya Aoki ◽  
Chihiro Mori ◽  
Eiko Fujita ◽  
Toshiya Matsushima ◽  

Serotonin (5-hydroxytryptamine, 5-HT) is a phylogenetically conserved modulatory neurotransmitter. In mammals, 5-HT plays an important role in the regulation of many mental states and the processing of emotions in the central nervous system. Serotonergic neurons in the central nervous system, including the dorsal raphe (DR) and median raphe (MR) nuclei, are spatially clustered in the brainstem and provide ascending innervation to the entire forebrain and midbrain. Both between and within the DR and MR, these serotonergic neurons have different cellular characteristics, developmental origin, connectivity, physiology, and related behavioral functions. Recently, an understanding of the heterogeneity of the DR and MR serotonergic neurons has been developed at the molecular level. In birds, emotion-related behavior is suggested to be modulated by the 5-HT system. However, correspondence between the raphe nuclei of birds and mammals, as well as the cellular heterogeneity in the serotonergic neurons of birds are poorly understood. To further understand the heterogeneity of serotonergic neurons in birds, we performed a molecular dissection of the chick brainstem using in situ hybridization. In this study, we prepared RNA probes for chick orthologs of the following serotonin receptor genes: 5-HTR1A, 5-HTR1B, 5-HTR1D, 5-HTR1E, 5-HTR1F, 5-HTR2A, 5-HTR2B, 5-HTR2C, 5-HTR3A, 5-HTR4, 5-HTR5A, and 5-HTR7. We showed that the expression pattern of 5-HT receptors in the serotonin neurons of chick DR and MR may vary, suggesting heterogeneity among and within the serotonin neurons of the DR and MR in the chick brainstem. Our findings regarding the molecular properties of serotonergic neurons in the bird raphe system will facilitate a good understanding of the correspondence between bird and mammalian raphes.

2022 ◽  
Vol 23 (2) ◽  
pp. 954
Ipek Akol ◽  
Fabian Gather ◽  
Tanja Vogel

Development of the central nervous system (CNS) depends on accurate spatiotemporal control of signaling pathways and transcriptional programs. Forkhead Box G1 (FOXG1) is one of the master regulators that play fundamental roles in forebrain development; from the timing of neurogenesis, to the patterning of the cerebral cortex. Mutations in the FOXG1 gene cause a rare neurodevelopmental disorder called FOXG1 syndrome, also known as congenital form of Rett syndrome. Patients presenting with FOXG1 syndrome manifest a spectrum of phenotypes, ranging from severe cognitive dysfunction and microcephaly to social withdrawal and communication deficits, with varying severities. To develop and improve therapeutic interventions, there has been considerable progress towards unravelling the multi-faceted functions of FOXG1 in the neurodevelopment and pathogenesis of FOXG1 syndrome. Moreover, recent advances in genome editing and stem cell technologies, as well as the increased yield of information from high throughput omics, have opened promising and important new avenues in FOXG1 research. In this review, we provide a summary of the clinical features and emerging molecular mechanisms underlying FOXG1 syndrome, and explore disease-modelling approaches in animals and human-based systems, to highlight the prospects of research and possible clinical interventions.

2022 ◽  
Vol 7 (4) ◽  
pp. 292-294
Aarti Chopra ◽  
Ravi Kumar ◽  
Girendra Kumar Gautam

Motor neuron diseases are a group of chronic sporadic and hereditary neurological disorders characterized by progressive degeneration of motor neurons. These might affect the upper motor neurons, lower motor neurons, or both. The prognosis of the motor neuron disease depends upon the age at onset and the area of the central nervous system affected. Amyotrophic lateral sclerosis (ALS) has been documented to be fatal within three years of onset. This activity focuses on amyotrophic lateral sclerosis as the prototype of MND, which affects both the upper and the lower motor neurons and discusses the role of inter-professional team in the differential diagnosis, evaluation, treatment, and prognostication. It also discusses various other phenotypes of MND with an emphasis on their distinguishing features in requisite detail.

Biology ◽  
2022 ◽  
Vol 11 (1) ◽  
pp. 143
Mithun Das ◽  
Monique L. Smith ◽  
Tomomi Furihata ◽  
Subir Sarker ◽  
Ross O’Shea ◽  

Zika virus (ZIKV) is a pathogenic neurotropic virus that infects the central nervous system (CNS) and results in various neurological complications. Astrocytes are the dominant CNS cell producer of the antiviral cytokine IFN-β, however little is known about the factors involved in their ability to mediate viral infection control. Recent studies have displayed differential responses in astrocytes to ZIKV infection, and this study sought to elucidate astrocyte cell-specific responses to ZIKV using a variety of cell models infected with either the African (MR766) or Asian (PRVABC59) ZIKV strains. Expression levels of pro-inflammatory (TNF-α and IL-1β) and inflammatory (IL-8) cytokines following viral infection were low and mostly comparable within the ZIKV-resistant and ZIKV-susceptible astrocyte models, with better control of proinflammatory cytokines displayed in resistant astrocyte cells, synchronising with the viral infection level at specific timepoints. Astrocyte cell lines displaying ZIKV-resistance also demonstrated early upregulation of multiple antiviral genes compared with susceptible astrocytes. Interestingly, pre-stimulation of ZIKV-susceptible astrocytes with either poly(I:C) or poly(dA:dT) showed efficient protection against ZIKV compared with pre-stimulation with either recombinant IFN-β or IFN-λ, perhaps indicating that a more diverse antiviral gene expression is necessary for astrocyte control of ZIKV, and this is driven in part through interferon-independent mechanisms.

2022 ◽  
Jimin Ren ◽  
Fang Yu ◽  
Benjamin M. Greenberg

Over the past four decades, ATP, the obligatory energy molecule for keeping all cells alive and functioning, was thought to contribute only one set of 31P MR signals in the human brain. Here we report for the first time the simultaneous detection of two pools of ATP in the human brain by high-resolution 3D 31P MRSI at ultrahigh field 7T. These two ATP pools differ in cytosolic Mg2+ concentration (1:0.5 ratio), with a resonance separation of 0.5 ppm at beta-ATP, a well-established imaging marker of intracellular Mg2+ concentration. Mg2+ is a cofactor of ATPase and its deficiency is associated with immune dysfunction, free radical damage, perturbations in Ca2+ homeostasis, development of atherosclerosis and dyslipidemia, and a number of neurological disorders, such as cerebral vasospasm, stroke, migraine, Alzheimer's disease, and Parkinson's disease. Our study documents reduced Mg levels in the brain of patients with myelin oligodendrocyte glycoprotein antibody disorders (MOGAD), which is an idiopathic, inflammatory, demyelinating condition of the central nervous system (CNS) more common in pediatric patients. Low-Mg2+ ATP signals in MOGAD were detected mostly in the white matter regions, which may suggest Mg2+ deficiency in oligodendrocytes, which are primarily responsible for maintenance and generation of the axonal myelin sheath. This preliminary study demonstrates the utility of the 7T 3D 31P MSRI for revealing altered energy metabolism with reduced Mg availability at a normal ATP level. The potential correlation between [Mg2+] and disease progression over time should be assessed in larger cohorts.

Cancers ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 421
Lide Alaña ◽  
Caroline E. Nunes-Xavier ◽  
Laura Zaldumbide ◽  
Idoia Martin-Guerrero ◽  
Lorena Mosteiro ◽  

Medulloblastoma is the primary malignant tumor of the Central Nervous System (CNS) most common in pediatrics. We present here, the histological, molecular, and functional analysis of a cohort of 88 pediatric medulloblastoma tumor samples. The WNT-activated subgroup comprised 10% of our cohort, and all WNT-activated patients had exon 3 CTNNB1 mutations and were immunostained for nuclear β-catenin. One novel heterozygous CTNNB1 mutation was found, which resulted in the deletion of β-catenin Ser37 residue (ΔS37). The ΔS37 β-catenin variant ectopically expressed in U2OS human osteosarcoma cells displayed higher protein expression levels than wild-type β-catenin, and functional analysis disclosed gain-of-function properties in terms of elevated TCF/LEF transcriptional activity in cells. Our results suggest that the stabilization and nuclear accumulation of ΔS37 β-catenin contributed to early medulloblastoma tumorigenesis.

Sign in / Sign up

Export Citation Format

Share Document