memory formation
Recently Published Documents


TOTAL DOCUMENTS

1874
(FIVE YEARS 431)

H-INDEX

104
(FIVE YEARS 13)

Cytokine ◽  
2022 ◽  
Vol 150 ◽  
pp. 155770
Author(s):  
Michelle Fleury ◽  
Cristina Vazquez-Mateo ◽  
Jaileene Hernandez-Escalante ◽  
Hans Dooms

2022 ◽  
Vol 119 (3) ◽  
pp. e2107661119
Author(s):  
William P. Dempsey ◽  
Zhuowei Du ◽  
Anna Nadtochiy ◽  
Colton D. Smith ◽  
Karl Czajkowski ◽  
...  

Defining the structural and functional changes in the nervous system underlying learning and memory represents a major challenge for modern neuroscience. Although changes in neuronal activity following memory formation have been studied [B. F. Grewe et al., Nature 543, 670–675 (2017); M. T. Rogan, U. V. Stäubli, J. E. LeDoux, Nature 390, 604–607 (1997)], the underlying structural changes at the synapse level remain poorly understood. Here, we capture synaptic changes in the midlarval zebrafish brain that occur during associative memory formation by imaging excitatory synapses labeled with recombinant probes using selective plane illumination microscopy. Imaging the same subjects before and after classical conditioning at single-synapse resolution provides an unbiased mapping of synaptic changes accompanying memory formation. In control animals and animals that failed to learn the task, there were no significant changes in the spatial patterns of synapses in the pallium, which contains the equivalent of the mammalian amygdala and is essential for associative learning in teleost fish [M. Portavella, J. P. Vargas, B. Torres, C. Salas, Brain Res. Bull. 57, 397–399 (2002)]. In zebrafish that formed memories, we saw a dramatic increase in the number of synapses in the ventrolateral pallium, which contains neurons active during memory formation and retrieval. Concurrently, synapse loss predominated in the dorsomedial pallium. Surprisingly, we did not observe significant changes in the intensity of synaptic labeling, a proxy for synaptic strength, with memory formation in any region of the pallium. Our results suggest that memory formation due to classical conditioning is associated with reciprocal changes in synapse numbers in the pallium.


2022 ◽  
Author(s):  
Jasmin M. Kizilirmak ◽  
Maxi Becker

This is one of two chapters on "A cognitive neuroscience perspective on insight as a memory process" to be published in the "Routledge International Handbook of Creative Cognition" by L. J. Ball & F. Valleé-Tourangeau (Eds.). While the previous chapter discussed the role of long-term memory for solving problems by insight [https://psyarxiv.com/zv4dk], the current chapter focuses on the role of insight problem solving for long-term memory formation. Insight in problem solving has long been assumed to facilitate memory formation for the problem and its solution. Here, we discuss cognitive, affective, and neurocognitive candidate mechanisms that may underlie learning in insight problem solving. We conclude that insight appears to combine several beneficial effects that each on their own have been found to facilitate long-term memory formation: the generation effect, subjective importance of the discovery of the solution, intrinsic reward, schema congruence, and level-of-processing. A distributed set of brain regions is identified that is associated with these processes. On the one hand, the more affective response related to pleasure, surprise, and novelty detection is linked to amygdala, ventral striatum, and dopaminergic midbrain activity, supporting an important role of reward learning. On the other hand, insight as completing a schema is associated with prior knowledge dependent and medial prefrontal cortex mediated memory formation. Thus, learning by insight may reflect a fast route to cortical memory representations. However, many open questions remain, which we explicitly point out during this review.


2021 ◽  
Vol 13 (2) ◽  
Author(s):  
Jacob Maze

Though scholars in memory studies often deal with different aspects of cultural memory, it is rare to find any systematic framework to which memory adheres to and which would explain the emergence and maintenance of memories in general. In this article, I use the concepts of Judith Butler’s theory of performativity, namely interpellation, subject constitution, repetition, sedimentation, citationality and subversion, to show how she could provide a procedural account of memory formation. To illustrate how this might work, I look at how Turkey has chosen to commemorate the failed coup of July 2016 by interpreting some examples of such memory through Butler’s theories. In doing so, I show that Butler, rather than introducing new concepts to the field, offers a systematic framework that can relate scholars to one another by transposing their concepts onto Butler’s theory.


2021 ◽  
Author(s):  
Julia Mae Juliano ◽  
Nicolas Schweighofer ◽  
Sook-Lei Liew

Abstract Background: Complex motor tasks in immersive virtual reality using a head-mounted display (HMD-VR) have been shown to increase cognitive load and decrease motor performance compared to conventional computer screens (CS). Separately, visuomotor adaptation in HMD-VR has been shown to recruit more explicit, cognitive strategies, resulting in decreased implicit mechanisms thought to contribute to motor memory formation. However, it is unclear whether visuomotor adaptation in HMD-VR increases cognitive load and whether cognitive load is related to explicit mechanisms and long-term motor memory formation.Methods: We randomized 36 healthy participants into three equal groups. All groups completed an established visuomotor adaptation task measuring explicit and implicit mechanisms, combined with a dual-task probe measuring cognitive load. Then, all groups returned after 24-hours to measure retention of the overall adaptation. One group completed both training and retention tasks in CS (measuring long-term retention in a CS environment), one group completed both training and retention tasks in HMD-VR (measuring long-term retention in an HMD-VR environment), and one group completed the training task in HMD-VR and the retention task in CS (measuring context transfer from an HMD-VR environment). A Generalized Linear Mixed-Effect Model (GLMM) was used to compare cognitive load between CS and HMD-VR during visuomotor adaptation, t-tests were used to compare overall adaptation and explicit and implicit mechanisms between CS and HMD-VR training environments, and ANOVAs were used to compare group differences in long-term retention and context transfer.Results: Cognitive load was found to be greater in HMD-VR than in CS. This increased cognitive load was related to decreased use of explicit, cognitive mechanisms early in adaptation. Moreover, increased cognitive load was also related to decreased long-term motor memory formation. Finally, training in HMD-VR resulted in decreased long-term retention and context transfer.Conclusions: Our findings show that cognitive load increases in HMD-VR and relates to explicit learning and long-term motor memory formation during motor learning. Future studies should examine what factors cause increased cognitive load in HMD-VR motor learning and whether this impacts HMD-VR training and long-term retention in clinical populations.


Politeja ◽  
2021 ◽  
Vol 18 (5(74)) ◽  
pp. 89-107
Author(s):  
Tadeusz Kopyś

Shaping of the Memory and Historical Policy in Hungary. The Case of Urban Space of Budapest Naming or changing street names (the same applies to monuments) means that certain political groups or communities can control the city. Activities in the urban space have great potential as they can lead to both community empowerment and fragmentation. Since 1989, the canon, or historical epochs to which the changing political elites at the helm of power tried to refer to by building a new urban space, also changed. The actions of Hungarian governments in the area of collective memory formation after 1989 can be described as incoherent. They leave their mark on the shape of the city, sometimes arousing consternation and sometimes the suspicion that certain decisions have a political overtone.


Author(s):  
Qianqian Duan ◽  
Jiying Ding ◽  
Fangfang Li ◽  
Xiaowei Liu ◽  
Yunan Zhao ◽  
...  

CD8+ T cell effector and memory differentiation is tightly controlled at multiple levels including transcriptional, metabolic, and epigenetic regulation. Sirtuin 5 (SIRT5) is a protein deacetylase mainly located at mitochondria, but it remains unclear whether SIRT5 plays key roles in regulating CD8+ T cell effector or memory formation. Herein, with adoptive transfer of Sirt5+/+ or Sirt5−/− OT-1 cells and acute Listeria monocytogenes infection model, we demonstrate that SIRT5 deficiency does not affect CD8+ T cell effector function and that SIRT5 is not required for CD8+ T cell memory formation. Moreover, the recall response of SIRT5 deficient memory CD8+ T cells is comparable with Sirt5+/+ memory CD8+ T cells. Together, these observations suggest that SIRT5 is dispensable for the effector function and memory differentiation of CD8+ T cells.


Sign in / Sign up

Export Citation Format

Share Document