scholarly journals A lower bound for the first eigenvalue of an elliptic operator

1983 ◽  
Vol 94 (2) ◽  
pp. 328-337 ◽  
Author(s):  
A Alvino ◽  
G Trombetti
Author(s):  
Jianfeng Lu ◽  
Stefan Steinerberger

The purpose of this short paper is to give a variation on the classical Donsker–Varadhan inequality, which bounds the first eigenvalue of a second-order elliptic operator on a bounded domain Ω by the largest mean first exit time of the associated drift–diffusion process via λ 1 ≥ 1 sup x ∈ Ω E x τ Ω c . Instead of looking at the mean of the first exit time, we study quantiles: let d p , ∂ Ω : Ω → R ≥ 0 be the smallest time t such that the likelihood of exiting within that time is p , then λ 1 ≥ log ( 1 / p ) sup x ∈ Ω d p , ∂ Ω ( x ) . Moreover, as p → 0 , this lower bound converges to λ 1 .


2015 ◽  
Vol 07 (03) ◽  
pp. 505-511 ◽  
Author(s):  
Guillaume Poliquin

We study the lower bounds for the principal frequency of the p-Laplacian on N-dimensional Euclidean domains. For p > N, we obtain a lower bound for the first eigenvalue of the p-Laplacian in terms of its inradius, without any assumptions on the topology of the domain. Moreover, we show that a similar lower bound can be obtained if p > N - 1 assuming the boundary is connected. This result can be viewed as a generalization of the classical bounds for the first eigenvalue of the Laplace operator on simply connected planar domains.


Sign in / Sign up

Export Citation Format

Share Document