Glucose oxidation, glucose transport and insulin binding in isolated rat epididymal adipocytes in the presence of anesthetics

Life Sciences ◽  
1981 ◽  
Vol 28 (19) ◽  
pp. 2151-2159 ◽  
Author(s):  
H. Joseph Goren ◽  
Sheldon H. Roth
1982 ◽  
Vol 4 (4) ◽  
pp. 261-271 ◽  
Author(s):  
Tj. Wieringa ◽  
G. Bruin ◽  
W. P. M. Meerwijk ◽  
H. M. J. Krans

1982 ◽  
Vol 60 (10) ◽  
pp. 987-1000 ◽  
Author(s):  
H. Joseph Goren ◽  
C. Ronald Kahn

The effect of 10 bifunctional cross-linking agents and four monofunctional analogues was studied on isolated adipocytes. [125I]Insulin binding and degradation, basal and insulin-stimulated glucose oxidation, and 3-O-methyl glucose uptake were measured. Two cross-linkers, which possess succinimide ester residues (disuccinimidyl suberate and dithiobis(succinimidyl propionate)) and react selectively with amino groups, appeared to react relatively specifically with the insulin receptor. Both produced a slight stimulation of basal glucose transport and metabolism, a marked inhibition of insulin-stimulated glucose transport and metabolism, and a marked decrease in insulin binding. Pretreatment of cells with unlabelled insulin partially blocked the effect of disuccinimidyl suberate, and as has been previously shown, disuccinimidyl suberate cross-linked insulin to its receptor. A monofunctional analogue of these compounds was 100-fold less active in altering cellular metabolic activity. Bisimidates, such as dimethyl suberimidate, dimethyl adipimidate, and dimethyl dithiobispropionimidate, also react with free amino groups but are more hydrophilic. These agents produced similar effects on glucose oxidation as the succinimide esters, but had little or no effect on insulin binding. The effects of these agents are not blocked by insulin and they do not cross-link insulin to its receptor. Mixed bifunctional reagents containing either a succinimide ester or an imidate and a group which reacts with thiols produced effects similar to the cross-linkers containing two succinimide groups or bisimidates, respectively. The bifunctional arylating agents difluorodinitrobenzene and bis(fluoronitrophenyl)sulfone produce marked effects on insulin binding and glucose oxidation at micromolar concentrations, but the monofunctional analogue fluorodinitrobenzene is almost equally active suggesting that with these compounds chemical modifications and not cross-linking was important. With neither the mixed bifunctional reagents, nor the arylating agents, did insulin pretreatment alter the effect of cross-linker and none of these agents cross-linked [125I]insulin to its receptor. These data suggest that the insulin receptor possesses a free amino group in a hydrophobic environment in its active site. A reactive amino group in a hydrophilic environment as well as other reactive groups are also present in some component of the insulin receptor–effector complex. Chemical modification or cross-linking of these functional groups results in an inhibition or mimicking of insulin action. Further study will be required to identify the exact locus of these sites.


1992 ◽  
Vol 70 (8) ◽  
pp. 1190-1194 ◽  
Author(s):  
Nirmal S. Basi ◽  
K. G. Thomaskutty ◽  
Richard H. Pointer

When isolated rat adipocytes were incubated with increasing concentrations of levamisole (0.5–5 mM), basal glucose oxidation decreased by almost 50% and insulin-stimulated glucose oxidation decreased by 90%. The decrease in glucose oxidation correlated with an inhibition of glucose transport, since levamisole at 5.0 mM decreased basal 3-O-methylglucose transport by 60% and insulin-stimulated transport by 80%. Diamide-stimulated glucose transport was also inhibited approximately 80% by 5.0 mM levamisole. Levamisole at concentrations up to 5.0 mM had no effect on phosphofructokinase activity. The present results suggest that levamisole inhibits glucose utilization by inhibiting glucose transport in a concentration-dependent manner.Key words: insulin, levamisole, glucose transport, adipocytes.


Sign in / Sign up

Export Citation Format

Share Document