Canadian Journal of Physiology and Pharmacology
Latest Publications


TOTAL DOCUMENTS

10691
(FIVE YEARS 468)

H-INDEX

108
(FIVE YEARS 9)

Published By Canadian Science Publishing

1205-7541, 0008-4212

Author(s):  
Xiao-xu Yang ◽  
Zhen-yu Zhao

Cardiac fibrosis is one of the major pathological characteristics of diabetic cardiomyopathy (DCM). MicroRNAs (miRNAs, miRs) have been identified as key regulators in the progression of cardiac fibrosis. This study aimed to investigate the role of miR-30a-5p in DCM and the underlying mechanism. The rat model of diabetes mellitus (DM) was established by streptozotocin injection, and the rat primary cardiac fibroblasts (CFs) were isolated from cardiac tissue and then treated with high glucose (HG). MTT assay was performed to assess the viability of CFs. Dual-luciferase reporter gene assay was conducted to verify the interaction between miR-30a-5p and Smad2. The expression of miR-30a-5p was downregulated in the myocardial tissues of DM rats and HG-stimulated CFs. Overexpression of miR-30a-5p reduced Smad2 levels and inhibited collagen formation in HG-stimulated CFs and DM rats, as well as decreased the proliferation of CFs induced by HG. Smad2 was a target of miR-30a-5p and its expression was inhibited by miR-30a-5p. Furthermore, the simultaneous overexpression of Smad2 and miR-30a-5p reversed the effect of miR-30a-5p overexpression alone in CFs. Our results indicated that miR-30a-5p reduced Smad2 expression and also induced a decrease in proliferation and collagen formation in DCM.


Author(s):  
Anita A. Mehta ◽  
Purav Patel ◽  
Vandana R. Thakur ◽  
Jayesh V. Beladiya

This study was designed to assess the effect of soya phosphatidylcholine (SPC) against ischemia/reperfusion (I/R) injury and the possible underlying mechanism using experimental and computational studies. I/R injury was induced by global ischemia for 30 min followed by reperfusion for 120 min. The perfusion of the SPC was performed for 10 min before inducing global ischemia. In the mechanistic study, the involvement of specific cellular pathways was identified using various inhibitors such as ATP-dependent potassium channel (KATP) inhibitor (glibenclamide), protein kinase C (PKC) inhibitor (chelerythrine), non-selective nitric oxide synthase inhibitor (L-NAME), and endothelium remover (Triton X-100). The computational study of various ligands was performed on toll-like receptor 4 (TLR4) protein using AutoDock version 4.0. SPC (100 μM) significantly decreased the levels of cardiac damage markers and %infarction compared with the vehicle control (VC). Furthermore, cardiodynamics (indices of left ventricular contraction (dp/dtmax), indices of left ventricular relaxation (dp/dtmin), coronary flow, and antioxidant enzyme levels were significantly improved as compared with VC. This protective effect was attenuated by glibenclamide, chelerythrine, and Triton X-100, but it was not attenuated by L-NAME. The computational study showed a significant bonding affinity of SPC to the TLR4-MD2 complex. Thus, SPC reduced myocardial I/R injury in isolated perfused rat hearts, which might be governed by the KATP channel, PKC, endothelium response, and TLR4-MyD88 signaling pathway.


Author(s):  
Elham Gholami ◽  
Mohammad Reza Gholami ◽  
Asadollah Tavakoli ◽  
Mahdie Ahmadi ◽  
Jafar Rezaian ◽  
...  

Demyelination disorder is an unusual pathologic event, which occurs in the central nervous system (CNS). Multiple sclerosis (MS) is an inflammatory demyelinating disease that affects the CNS, and it is the leading cause of disability in young adults. Lysolecithin (LPC) is one of the best toxin-induced demyelination models. In this study, a suitable model is created, and the effect of fluoxetine treatment is examined on this model. In this case, it was assumed that daily fluoxetine treatment had increased the endogenous remyelination in the LPC model. This study was focused on investigating the influence of the fluoxetine dose of 5 or 10 mg/kg per day for 1 and 4 weeks on LPC-induced neurotoxicity in the corpus callosum region. It was performed as a demyelinating model in male Wistar rats. After 3 days, fluoxetine was injected intraperitoneally (5 or 10 mg/kg per day) for 1 and 4 weeks in each group. After completing the treatment course, the corpus callosum was removed to examine the gene expression and histological analysis was performed. The results of the histopathological study of hematoxylin and eosin staining of the corpus callosum showed that in 1 and 4-week treatment groups, fluoxetine has reduced the level of inflammation at the LPC injection site (5 and 10 mg/kg per day). Fluoxetine treatment in the luxol fast blue (LFB) staining of the corpus callosum has been led to an increase in myelination capacity in all doses and times. The results of the genetic study showed that the fluoxetine has significantly reduced the expression level of tumor necrosis factor-α, nuclear factor κβ, and induced nitric oxide synthase in comparison with the untreated LPC group. Also, the fluoxetine treatment has enhanced the expression level of the forkhead box P3 (FOXP3) gene in comparison with the untreated group. Fluoxetine has increased the expression level of myelination and neurotrophic genes such as myelin basic protein (MBP), oligodendrocyte transcription factor 2 (OLIG2), and brain-derived neurotrophic factor (BDNF). The outcomes demonstrated that fluoxetine reduces inflammation and strengthens the endogenous myelination in the LPC-induced demyelination model; however, supplementary studies are required for specifying the details of its mechanisms.


Author(s):  
Gaurav Kumar ◽  
Manisha Saini ◽  
Suman Kundu

Over the last few decades, substantial progress has been made towards the understanding of cardiovascular diseases (CVDs). In-depth mechanistic insights have also provided opportunities to explore novel therapeutic targets and treatment regimens to be discovered. Therapeutic enzymes are an example of such opportunities. The balanced functioning of such enzymes protects against a variety of CVDs while on the other hand, even a small shift in the normal functioning of these enzymes may lead to deleterious outcomes. Owing to the great versatility of these enzymes, inhibition and activation are key regulatory approaches to counter the onset and progression of several cardiovascular impairments. While cardiovascular remedies are already available in excess and of course they are efficacious, a comprehensive description of novel therapeutic enzymes to combat CVDs is the need of the hour. In light of this, the regulation of the functional activity of these enzymes also opens a new avenue for the treatment approaches to be employed. This review describes the importance of non-conventional enzymes as potential candidates in several cardiovascular disorders while highlighting some of the recently targeted therapeutic enzymes in CVDs.


Author(s):  
Alvaro Lucci ◽  
Marina C Vera ◽  
Carla G Comanzo ◽  
Florencia Lorenzetti ◽  
Anabela C Ferretti ◽  
...  

The complexity of hepatocellular carcinoma (HCC) signaling and the failure of pharmacological therapeutics reveal the significance of establishing new anti-cancer strategies. Interferon alpha (IFN α) has been used as adjuvant therapy for reducing HCC recurrence and improving survival. Delta-tocotrienol (δ-tocotrienol), a natural unsaturated isoform of vitamin E, is a promising candidate for cancer treatment. In this study, we evaluated whether the combination of δ-tocotrienol with IFN α displays significant advantages in the treatment of HCC cells. Results showed that the combination significantly decreased cell viability, migration and invasion of HCC cells compared to single therapies. Combining δ-tocotrienol and IFN α enhanced the decrease in proliferating cell nuclear antigen (PCNA) and matrix metalloproteinases MMP-7 and MMP-9. The combination also produced an enhancement of apoptosis together with increased Bax/Bcl-xL ratio and ROS generation. δ-tocotrienol induced Notch1 activation and changes in Erk and p38 MAPK signaling status. Blocking experiments confirmed that ROS and Erk are involved, at least in part, in the anticancer effects of the combined treatment. In conclusion, the combination of δ-tocotrienol with IFN α therapy showed promising results for HCC cells treatment, which makes the combination of cytokine-based immunotherapy with natural products a potential strategy against liver cancer.


Author(s):  
Chandrakala Aluganti Narasimhulu ◽  
Dinender Kumar Singla

Diabetic cancer patients treated with Doxorubicin (DOX), a potent chemotherapeutic drug induces cardiac toxicity. However, molecular mechanisms of cardiac toxicity in this specific disease progression in patients and animal models are completely unknown. Therefore, we designed a study to understand the effects of doxorubicin induced cardiac toxicity in diabetic animals and involved pathophysiological mechanisms. C57BL/6J mice were divided into DOX and diabetic (STZ) treated four groups; control, STZ, DOX and DOX+STZ. At Day 14, animals were sacrificed, echocardiography was used to examine heart function, heart and blood samples were collected to investigate apoptotic mechanisms (Caspase 3, BAX, Bcl2), inflammation and cardiac remodeling. Our data shows a significant (p<0.05) increase in glucose levels, apoptotic markers, monocyte infiltration at the site of apoptosis and triggered inflammatory immune response (TNF-α and IL-6), in DOX+STZ animals compared to control and experimental groups. We also observed significant (p<0.05) increase in myofibrillar area, fibrosis and significantly decreased (p<0.05) cardiac function in DOX-treated diabetic animals compared with controls. In conclusion, our data suggest that DOX-induces significantly increased apoptosis, fibrosis and structural alterations in diabetic hearts compared to non-diabetic animals.


Author(s):  
Megha Sahu ◽  
Arun K. Sharma ◽  
Gunjan Sharma ◽  
Ashish Kumar ◽  
Mukesh Nandave ◽  
...  

Our current investigation comprises the synthesis and pharmacological impact of bromelain copper nanoparticles (BrCuNP) against diabetes mellitus (DM) and associated ischemia/reperfusion (I/R) – induced myocardial infarction. Bromelain is a proteolytic enzyme obtained from Ananas comosus L. Merr., which has blood platelet aggregation inhibiting and arterial thrombolytic potential. Moreover, copper is well-known to facilitate glucose metabolism and strengthen cardiac muscle and antioxidant activity; although, chronic or long-term exposure to high doses of copper may lead to copperiedus. To restrict these potential hazards, we synthesized herbal nano-formulation which convincingly indicated the improved primordial therapeutic potential of copper by reformulating the treatment carrier with bromelain, resulting in facile synthesis of BrCuNP. DM was induced by administration of double cycle repetitive dose of low dose streptozotocin (20 mg/kg, i.p.) in high-fat diet- fed animals. DM and associated myocardial I/R injury were estimated by increased serum levels of total cholesterol, low-density lipoprotein, very low-density lipoprotein, lactate dehydrogenase, creatine kinase myocardial band, cardiac troponin, thiobarbituric acid reactive substances, tumor necrosis factor α, interleukin 6, and reduced serum level of high-density lipoprotein and nitrite/nitrate concentration. However, treatment with BrCuNP ameliorates various serum biomarkers by approving cardioprotective potential against DM- and I/R-associated injury. Furthermore, upturn of histopathological changes were observed in cardiac tissue of BrCuNP-treated rats in comparison to disease models.


Author(s):  
Fatima El Amine ◽  
Brandon Alexander Heidinger ◽  
Jameason D Cameron ◽  
Kaamel Hafizi ◽  
Shakibasadat BaniFatemi ◽  
...  

Introduction: Olfaction contributes to feeding behaviour and is modulated by changes in dopamine levels. Methylphenidate (MPH) increases brain dopamine levels and has been shown to reduce appetite and promote weight loss in patients with attention deficit hyperactivity disorder. The objectives of this study were to test the effect of MPH on olfaction, appetite, energy intake and body weight on individuals with obesity. Methods: In a randomized, double-blind study, 12 participants (age 28.9±6.7 yrs) (BMI 36.1±4.5 kg/m2) were assigned to MPH (0.5mg/kg) (n=5) or Placebo (n=7) twice daily for 2 months. Appetite (Visual Analog Scale), odour threshold (Sniffin’ Sticks®), energy intake (food menu), and body weight (DEXA scan) were measured at day 1 and day 60. Results: MPH intake significantly increased odour threshold scores (6.3±1.4 vs. 9.4±2.1 and 7.9±2.3 vs. 7.8±1.9, respectively; p=0.029) vs. Placebo. There was a significantly greater suppression of appetite sensations (desire to eat (p=0.001), hunger (p=0.008), and prospective food consumption (p=0.003)) and an increase in fullness (p=0.028) over time in the MPH vs. Placebo. Conclusions: MPH suppressed appetite and improved olfactory sensitivity in individuals with obesity. These data provide novel findings on the favourable effects of MPH on appetite and weight regulation in individuals living with obesity.


Author(s):  
Vivek S Kumawat ◽  
Ginpreet Kaur

Beta-caryophyllene (BCP), a cannabinoid 2 receptor (CB2) agonist has recently been found to have cardioprotective activity as an anti-inflammatory and antioxidant molecule. L-arginine (LA), a nitric oxide (NO) donor is a potential regulator of cardiovascular function. Considering the role of CB2 receptor activation and NO regulation in cardiovascular diseases, the combination of BCP with LA may be a possible treatment of diabetic cardiomyopathy (DCM). Hence, we investigated the efficacy of the novel combination of BCP with LA on cardiovascular inflammation and oxidative stress in diabetic rats. DCM was induced by Streptozotocin (55 mg/kg) in SD rats intraperitoneally. BCP, LA and BCP with LA were administered to diabetic rats for 4 weeks. After completion of the study, hemodynamic parameters, biochemical parameters, and inflammatory cytokine levels were analyzed. Also, oxidative stress parameters, NF-ĸβ expression and histopathology in cardiac tissues were estimated. The combination of BCP (200 mg/kg) with LA (200 mg/kg) significantly normalized the hemodynamic parameters and decreased the glucose, cardiac markers, IL-6 and TNF-α levels. Treatment of BCP and LA showed a significant decrease in oxidative stress and down-regulated the cardiac expression of NF-ĸβ. Thus, the combination of BCP with LA improves cardiac functions by attenuating inflammation through NF-ĸβ inhibition in DCM.


Sign in / Sign up

Export Citation Format

Share Document