Finite element or finite difference methods for the two-dimensional shallow water equations?

1976 ◽  
Vol 7 (3) ◽  
pp. 351-357 ◽  
Author(s):  
T.J. Weare
2019 ◽  
Vol 34 (2) ◽  
pp. 105-117 ◽  
Author(s):  
Gayaz S. Khakimzyanov ◽  
Zinaida I. Fedotova ◽  
Oleg I. Gusev ◽  
Nina Yu. Shokina

Abstract Basic properties of some finite difference schemes for two-dimensional nonlinear dispersive equations for hydrodynamics of surface waves are considered. It is shown that stability conditions for difference schemes of shallow water equations are qualitatively different in the cases the dispersion is taken into account, or not. The difference in the behavior of phase errors in one- and two-dimensional cases is pointed out. Special attention is paid to the numerical algorithm based on the splitting of the original system of equations into a nonlinear hyperbolic system and a scalar linear equation of elliptic type.


Author(s):  
Zinaida I. Fedotova ◽  
Gayaz S. Khakimzyanov

AbstractThe paper contains a description of the most important properties of numerical methods for solving nonlinear dispersive hydrodynamic equations and their distinctions from similar properties of finite difference schemes approximating classic dispersion-free shallow water equations.


1994 ◽  
Vol 04 (04) ◽  
pp. 533-556 ◽  
Author(s):  
V. AGOSHKOV ◽  
E. OVCHINNIKOV ◽  
A. QUARTERONI ◽  
F. SALERI

This paper deals with time-advancing schemes for shallow water equations. We review some of the existing numerical approaches, propose new schemes and investigate their stability. We present numerical results obtained using the time-advancing schemes proposed, with finite element and finite difference approximation in space variables.


Sign in / Sign up

Export Citation Format

Share Document