Characteristic-Galerkin and Galerkin/least-squares space-time formulations for the advection-diffusion equation with time-dependent domains

1992 ◽  
Vol 100 (1) ◽  
pp. 117-141 ◽  
Author(s):  
O. Pironneau ◽  
J. Liou ◽  
T. Tezduyar
2019 ◽  
Vol 65 (1/2/3) ◽  
pp. 211
Author(s):  
Tiziano Tirabassi ◽  
Everson J.G. Silva ◽  
Daniela Buske ◽  
Marco T. Vilhena

2012 ◽  
Vol 711 ◽  
pp. 212-258 ◽  
Author(s):  
Julien R. Landel ◽  
C. P. Caulfield ◽  
Andrew W. Woods

AbstractWe investigate experimentally and theoretically the streamwise transport and dispersion properties of steady quasi-two-dimensional plane turbulent jets discharged vertically from a slot of width $d$ into a fluid confined between two relatively close rigid boundaries with gap $W\ensuremath{\sim} O(d)$. We model the evolution in time and space of the concentration of passive tracers released in these jets using a one-dimensional time-dependent effective advection–diffusion equation. We make a mixing length hypothesis to model the streamwise turbulent eddy diffusivity such that it scales like $b(z){ \overline{w} }_{m} (z)$, where $z$ is the streamwise coordinate, $b$ is the jet width, ${ \overline{w} }_{m} $ is the maximum time-averaged vertical velocity. Under these assumptions, the effective advection–diffusion equation for $\phi (z, t)$, the horizontal integral of the ensemble-averaged concentration, is of the form ${\partial }_{t} \phi + {K}_{a} {\text{} {M}_{0} \text{} }^{1/ 2} {\partial }_{z} \left(\phi / {z}^{1/ 2} \right)= {K}_{d} {\text{} {M}_{0} \text{} }^{1/ 2} {\partial }_{z} \left({z}^{1/ 2} {\partial }_{z} \phi \right)$, where $t$ is time, ${K}_{a} $ (the advection parameter) and ${K}_{d} $ (the dispersion parameter) are empirical dimensionless parameters which quantify the importance of advection and dispersion, respectively, and ${M}_{0} $ is the source momentum flux. We find analytical solutions to this equation for $\phi $ in the cases of a constant-flux release and an instantaneous finite-volume release. We also give an integral formulation for the more general case of a time-dependent release, which we solve analytically when tracers are released at a constant flux over a finite period of time. From our experimental results, whose concentration distributions agree with the model, we find that ${K}_{a} = 1. 65\pm 0. 10$ and ${K}_{d} = 0. 09\pm 0. 02$, for both finite-volume releases and constant-flux releases using either dye or virtual passive tracers. The experiments also show that streamwise dispersion increases in time as ${t}^{2/ 3} $. As a result, in the case of finite-volume releases more than 50 % of the total volume of tracers is transported ahead of the purely advective front (i.e. the front location of the tracer distribution if all dispersion mechanisms are ignored and considering a ‘top-hat’ mean velocity profile in the jet); and in the case of constant-flux releases, at each instant in time, approximately 10 % of the total volume of tracers is transported ahead of the advective front.


Author(s):  
Mohammad Ghani

AbstractWe are concerned with the study the differential equation problem of space-time and motion for the case of advection-diffusion equation. We derive the advection-diffusion equation from the conservation of mass, where this can be represented by the substance flow in and flow out through the medium. In this case, the concentration of substance and rate of flow of substance in a medium are smooth functions which is useful to generate advection-diffusion equation. A special case of the advection-diffusion equation and numerical results are also given in this paper. We use explicit and implicit finite differences method for numerical results implemented in MATLAB.Keywords: advection-diffusion; space-time; motion; finite difference method. AbstrakKami tertarik untuk mempelajari masalah persamaan diferensial ruang-waktu, dan gerak untuk kasus persamaan adveksi-difusi. Kita menurunkan persamaan adveksi-difusi dari kekekalan massa, di mana hal ini dapat diwakili oleh aliran zat yang masuk dan keluar melalui media. Dalam hal ini konsentrasi zat dan laju aliran zat dalam suatu medium merupakan fungsi halus yang berguna untuk menghasilkan persamaan adveksi-difusi. Sebuah kasus khusus persamaan adveksi-difusi dan hasil numerik juga diberikan dalam makalah ini. Kami menggunakan metode beda hingga explisit dan implisit untuk hasil numerik yang diimplementasikan dalam MATLAB.Kata kunci: adveksi-difusi; ruang-waktu; gerak; metode beda hingga.


2016 ◽  
Vol 4 (2) ◽  
pp. 67-73
Author(s):  
A. A. Marrouf ◽  
Maha S. El-Otaify ◽  
Adel S. Mohamed ◽  
Galal Ismail ◽  
Khaled S. M. Essa

Sign in / Sign up

Export Citation Format

Share Document