turbulent jets
Recently Published Documents


TOTAL DOCUMENTS

795
(FIVE YEARS 90)

H-INDEX

52
(FIVE YEARS 4)

Galaxies ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 114
Author(s):  
James R. Webb ◽  
Viviana Arroyave ◽  
Douglas Laurence ◽  
Stephen Revesz ◽  
Gopal Bhatta ◽  
...  

We present the results of a long-term study designed to investigate the nature of micro-variability in blazars carried out primarily at the Southeastern Association for Research in Astronomy (SARA) observatories. We analyzed micro-variability data of fifteen OVV quasars and BL Lac sources collected from 1995 to 2021. The data set consists of single-band light curves interspersed with multi-color and micro-variability observations. This paper reports over 900 nights of CCD observations. We also incorporated observations from other observers as well as observations gleaned from the literature into our analysis. We employed differential photometry to measure magnitudes and then construct the long-term and micro-variability light curves. Our results indicate that there is no correlation between the presence of micro-variations and the brightness of the source. We present a viable theory to explain the intermittent micro-variability as pulses of radiation emitted by individual turbulent cells in the relativistic jet, which are stimulated by a passing shock wave. We present model fits and test results for various data sets, including WEBT light curves, Kepler light curves and a TESS light curve. Although the consensus in the community is that blazar jets must be turbulent, the identification of micro-variations as manifestations of actual turbulent cells is important for modeling these turbulent jets. We can obtain estimates of cell sizes (assuming a shock speed), and the distribution of cell sizes derived from observations is consistent with numerical simulation predictions.


2021 ◽  
Vol 6 (12) ◽  
Author(s):  
Igor A. Maia ◽  
Peter Jordan ◽  
André V. G. Cavalieri ◽  
Eduardo Martini ◽  
Kenzo Sasaki ◽  
...  

2021 ◽  
Vol 2119 (1) ◽  
pp. 012029
Author(s):  
M V Philippov ◽  
I A Chokhar ◽  
V V Terekhov ◽  
V I Terekhov

Abstract Local and integral characteristics of heat transfer are obtained at varying the Reynolds number Re = 5500, 11000, the distance between the jets y/D = 1.8, and the distance from the jets to the surface z/D = 0.5-10 for the system of two identical impinging jets. It is found in experiments that the effect of an adjacent jet leads to enhancement of local heat transfer at large distances between the nozzles and the barrier. It is also shown that an increase in the Re number increases integral heat transfer, and, at the same time, weakens the inter-jet interaction. The paper analyzes the scenarios of the behavior of local and integral heat transfer depending on the geometric and flow parameters of the system of two circular turbulent jets.


2021 ◽  
Vol 2131 (5) ◽  
pp. 052068
Author(s):  
A M Grimitlin ◽  
A S Strongin

Abstract Strict requirements for microclimate parameters are imposed on food storage premises, which are equipped with artificial cooling systems. The experience of operating the refrigerated premises revealed the following disadvantages: uneven distribution and significant fluctuations in temperature and relative humidity; periodic precipitation of condensate in low-temperature sections. Elimination of the noted disadvantages is effectively achieved by using axial fans that form a swirling air stream that induces the ambient air. Swirling jets used to intensify the process of air circulation in a room in order to eliminate unventilated zones will be called activating jets. To assess the efficiency of the application of activating turbulent jets, an integral method based on the energy balance was used. Using the example of a representative object, it is shown that the distance of the effective application of an activating turbulent jet should be calculated taking into account the influence of environmental turbulence, which is determined by the amount of energy introduced and dissipated in the room.


Author(s):  
Pourya Nejatipour ◽  
Babak Khorsandi

Abstract The effect of nozzle geometry on the dynamics and mixing of turbulent jets is experimentally investigated. The jets with a Reynolds number of 13,000 were issued from four different pipes with circular, elliptical, square and triangular cross sections. The velocity field was measured in the self-similar region of the jets using an acoustic Doppler velocimeter. Statistical parameters, such as the mean velocities, velocity variances, spreading rates, mass flow rates, and entrainment rates are presented. The results show that despite having approximately similar decay rates for the mean centerline velocities, the radial profiles of the axial mean velocity varied in jets with different nozzle cross sections and were widest for elliptical jets and narrowest for the triangular ones. On the other hand, velocity variances were greatest for the triangular jet when compared to the jets released from cross sections of other geometries. Furthermore, the spreading rate, mass flow rate, and entrainment rate were highest for the elliptical jet, and lowest for the triangular jet. From this it can be inferred that the elliptical jet has the highest mixing and dilution. The results of this study could help to improve the initial mixing of pollutants by optimizing the initial conditions.


2021 ◽  
Vol 2088 (1) ◽  
pp. 012036
Author(s):  
V B Prokhorov ◽  
V S Kirichkov ◽  
S L Chernov ◽  
A A Kaverin ◽  
N E Fomenko

Abstract For advanced ultra-supercritical parameters (A-USC) of steam, the design of an M-shaped boiler is proposed, designed to operate in a 500 MW unit on a lean coal (grade TR). The boiler profile is selected from the condition of minimizing the length of the main steamlines made of expensive nickel-alloy steel. With regard to this boiler, a scheme has been developed for pulverized coal combustion in an invert furnace using direct-flow burners and nozzles. Research has been carried out on the physical model of the furnace in the implementation of this combustion scheme: a qualitative study of the trajectories of the burner jets, jets of secondary and tertiary air obtained by their hot spark visualization; quantitative determination of the main characteristics of burner jets and their weight gain. The studies have shown the high efficiency of the recommended scheme of the furnace-burner device: a staged supply of the oxidizer along the flame length and along the furnace height is organized; the dynamic pressure of jets on the furnace wall tubes is excluded; vortex furnace aerodynamics should provide a high degree of burnout of coal dust particles; air jets evenly fill the horizontal section of the furnace; the ejection capacity of turbulent jets is much higher than for a flat submerged jet.


2021 ◽  
Vol 2094 (5) ◽  
pp. 052068
Author(s):  
A P Akimov ◽  
P L Lekomtsev ◽  
V A Likhanov ◽  
O P Lopatin ◽  
A O Vasiliev

Abstract The rate of oxidation of carbon (including its dispersed forms) has a value much higher than the rate of gasification. Therefore, in the initial part of the flame, when oxygen is still contained in the gas phase, the oxidation of soot will be the process on which the change in the size and concentration of dispersed carbon particles mainly depends. The intensity of oxidation and gasification of dispersed carbon in the flame largely depends on the development of the mixing process, determined by the aerodynamics of the fuel and air jets. The paper presents an analysis of the influence of mixing processes on the oxidation and gasification of dispersed carbon in a natural gas flame in the study of homogeneous flames and mixing of turbulent jets. The results of industrial studies of the mixing of fuel and air in a diffusion torch are taken into account. The results allow us to evaluate the influence of various aerodynamic factors on the processes occurring in the glowing flame of natural gas in the combustion chamber of gas diesel.


Author(s):  
Mahmud Rashedul Amin ◽  
Nallamuthu Rajaratnam ◽  
David Z. Zhu
Keyword(s):  

2021 ◽  
Vol 2057 (1) ◽  
pp. 012099
Author(s):  
M P Tokarev ◽  
M Yu Nichik ◽  
O A Gobyzov ◽  
S S Abdurakipov ◽  
V M Dulin

Abstract The study of physical processes dominating in submerged turbulent jets impinging on a wall is an important task because this configuration is utilized in various applications. The efficiency of heat transfer in this configuration has been a subject of a long-term study. Active flow control technique and the optimization of the control signal can be applied to exploit inherent flow properties to further improve the heat transfer from the wall in impingent jets. In this paper, IR-thermography and time-resolved PIV measurements are used for the diagnostics of wall temperature fields and large-scale vortex dynamics under external flow rate forcing control. It is found that the low-frequency forcing (for the Strouhal number St = 0.6) increases integral temperature on the wall as compared to the unforced case and the high-frequency forcing (St = 0.9).


Author(s):  
Mahmud R. Amin ◽  
Nallamuthu Rajaratnam ◽  
David Z. Zhu

Abstract This work presents an analytical study of the flow and energy loss immediately downstream of rectangular sharp-crested weirs for free and submerged flows, using the theory of plane turbulent jets and the analysis of some relevant studies. The flow regimes downstream of the sharp-crested weir is characterized as the impinging jet and surface flow regimes. Based on the flow characteristics and the downstream tailwater depths, each flow regime is further classified, and the relative energy loss equation is developed. It is found that significant energy loss occurs for the regime of supercritical flow and the upper stage of impinging jet flow. The energy loss for the submerged flow regime is minimal.


Sign in / Sign up

Export Citation Format

Share Document