Finite element modeling of scattering problems involving infinite domains using drilling degrees of freedom

1996 ◽  
Vol 134 (1-2) ◽  
pp. 57-70 ◽  
Author(s):  
Jaehwan Kim ◽  
Vasundara V. Varadan ◽  
Vijay K. Varadan
2000 ◽  
Vol 16 (2) ◽  
pp. 103-108 ◽  
Author(s):  
Jaehwan Kim ◽  
Vasundara V. Varadan ◽  
Vijay K. Varadan

ABSTRACTThis paper deals with a hybrid finite element method for wave scattering problems in infinite domains. Scattering of waves involving complex geometries, in conjunction with infinite domains is modeled by introducing a mathematical boundary within which a finite element representation is employed. On the mathematical boundary, the finite element representation is matched with a known analytical solution in the infinite domain in terms of fields and their derivatives. The derivative continuity is implemented by using a slope constraint. Drilling degrees of freedom at each node of the finite element model are introduced to make the numerical model more sensitive to the transverse component of the elastodynamic field. To verify the effects of drilling degrees freedom and slope constraints individually, reflection of normally incident P and SV waves on a traction free half space is considered. For P-wave incidence, the results indicate that the use of a slope constraint is more effective because it suppresses artificial reflection at the mathematical boundary. For the SV-wave case, the use of drilling degrees of freedom is effective in reducing numerical error at the irregular frequencies.


2014 ◽  
Vol 553 ◽  
pp. 673-678
Author(s):  
Hamid Sheikh ◽  
Liang Huang

This paper presents an efficient finite element modeling technique for stiffened composite shells having different stiffening arrangements. The laminated shell skin is modeled with a triangular degenerated curved shell element having 3 corner nodes and 3 mid-side nodes. An efficient curved beam element compatible with the shell element is developed for the modeling of stiffeners which may have different lamination schemes. The formulation of the 3 nod degenerated beam element may be considered as one of the major contributions. The deformation of the beam element is completely defined in terms of the degrees of freedom of shell elements and it does not require any additional degrees of freedom. As the usual formulation of degenerated beam elements overestimates their torsional rigidity, a torsion correction factor is introduced for different lamination schemes. Numerical examples are solved by the proposed finite element technique to assess its performance.


2018 ◽  
Vol 10 (08) ◽  
pp. 1850085 ◽  
Author(s):  
M. Bahrampour ◽  
S. Hamzeh Javaran ◽  
S. Shojaee

In this study, a new formulation of finite element method (FEM) has been extracted to analyze 2D viscoelastic problems. As there has not been enough accuracy and not sufficient literature in classical finite element modeling of viscoelastic problems, using a new set of shape functions founded on radial basis functions (RBFs) is recommended. Applying these new, RBF-based shape functions instead of the classical Lagrangian ones, results in subtler answers and conducts a reconsideration over the usual numerical method. Hankel functions are chosen, enriched and summed up with polynomial terms. Therefore, they satisfy not only polynomial terms, but also the first- and second-order Bessel functions simultaneously; which, in the case of classic shape functions, happens only for the polynomial function field. This method illustrates an approach with faster convergence rate and better robustness in different manners. Hence, it is less time-consuming and economical. Finally, various numerical examples are provided for the comparison of analytical solution, classic FEM and Hankel-based FEM, which show the much better agreement of the proposed method with analytical solution in comparison to classic FEM. Also, the number of nodes and degrees of freedom are reduced noticeably while maintaining accuracy in the interpolation of the adopted procedure.


1991 ◽  
Vol 3 (1) ◽  
pp. 235-253 ◽  
Author(s):  
L. D. Philipp ◽  
Q. H. Nguyen ◽  
D. D. Derkacht ◽  
D. J. Lynch ◽  
A. Mahmood

Sign in / Sign up

Export Citation Format

Share Document