radiation heat transfer
Recently Published Documents


TOTAL DOCUMENTS

1031
(FIVE YEARS 157)

H-INDEX

41
(FIVE YEARS 4)

Author(s):  
Clément Piégay ◽  
Philippe Glé ◽  
Etienne Gourlay ◽  
Emmanuel Gourdon ◽  
Sandrine Marceau

Biosourced materials such as vegetal wools offer major thermal insulation advantages in the green buildings field. Experimental characterisations of vegetal wools thermal conductivity as a function of their density show the existence of an optimum conduction-radiation coupled value. This specific point, as well as the properties of vegetal wools are related to the large variability of shapes and sizes of their fibres. In order to take this specificity into account, it seems particularly relevant to use micro-macro modelling methods to predict the thermal conductivities related to both conduction and radiation heat transfer phenomena. In a first time, a self-consistent method based on a cylindrical geometry (SCMcyl) is used as a modelling approach for conduction transfers. Then, a modelling approach developed by Bankvall and based on an equivalent fibre radius value is used for radiation transfers. So, by coupling these two approaches, it is possible to obtain an equivalent thermal conductivity of fibrous materials as a function of density. Finally, this method is validated by comparison with experimental data.


2021 ◽  
Author(s):  
Jingming Li

Thermal electricity generation (TEG) is a potential method to utilize energy emitted from the built environment. This work presents a prototype of the low-cost full-day power generation solar building component, which can be integrated as the building fabric or as a part of the solar panels. The size of the prototype is 0.04 m2. The overall cost is less than 25 USD. The prototype is tested in various environments to validate its performance. The first experiment tests its performance under the radiation of a high-temperature source, the prototype can generate the highest voltage of 0.8 V. In onsite experiments, it can reach a maximum value of 10 mW/m2 under sunlight. It can also work at night depending on the thermal radiation of the environment. It can also be used in different weather; the performance is even better than the nighttime. The experiments indicate that radiation heat transfer has a stronger influence on energy conversion than the convective heat transfer. The relative humidity has a certain influence on its performance, but there is no obvious effect of radiation heat transfer. Although the prototype has great potential, there are still limitations, and this article also discusses the problems. Meanwhile, this article also points out possible directions for improving design in the future. The results in this article might be helpful for zero-energy buildings and low-carbon buildings.


2021 ◽  
Author(s):  
Anuj B ◽  
G Mahesh Nayak ◽  
Yogesh B ◽  
Saravanan B

Abstract Endeavour is made to investigate the effect of swirled air on methane-air combustion in a Harwell combustor geometry. The inlet air swirl intensity on combustion characteristics such as temperature, pollutant formation, and flow dynamics is studied. The modeling of turbulent characteristics is performed with the standard K–ε model using ANSYS Fluent. Eddy dissipation model with one step reaction is used for modeling chemical reaction and P-I radiation model for radiation heat transfer. The swirl number is achieved in the range of 0.0 to 0.6, by varying the tangential velocity to the air inlet. With the increase in swirl intensity, the maximum flame temperature drops, and most of the flame formation shifts towards the inlet of the furnace. The change in the flow field is aided by the formation of recirculating bubbles. The swirl causes the flame to spread radially away from the axis, thereby increasing the heat transfer flux to the furnace wall. As a result, a significant reduction in the formation of NO pollutants is observed.


2021 ◽  
Vol 2119 (1) ◽  
pp. 012146
Author(s):  
I A Burkov ◽  
S I Khutsieva ◽  
V A Voronov

Abstract The paper considers the particular case of intensive radiation heat transfer in the system consisting of a human body and cryocabin walls of cryosauna. Calculations for three models have been made, namely, human-vertical wall, which is arranged parallel to a human, human-vertical wall, which is positioned at a certain angle, and a human-cryosauna. Analytical calculations are compared with Ansys-bassed numerical calculations. The impact of radiation heat transfer in this radiation-convective heat transfer problem is estimated. Conclusions are drawn about taking into account the radiation heat transfer and a rational method for calculating this heat transfer problem.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Ender Hepkaya ◽  
Nuri Yucel

Purpose This study aims to methodologically investigate heat transfer effects on reacting flow inside a liquid-fueled, swirl-stabilized burner. Furthermore, particular attention is paid to turbulence modeling and the results of Reynolds-averaged Navier–Stokes and large eddy simulation approaches are compared in terms of velocity field and flame temperature. Design/methodology/approach Simulations consist liquid fuel distribution using Eulerian–Lagrangian approach. Flamelet-Generated Manifold combustion model, which is a mixture fraction-progress variable formulation, is used to obtain reacting flow field. Discrete ordinates method is also added for modeling radiation heat transfer effect inside the burner. As a parametric study, different thermal boundary conditions namely: adiabatic wall, constant temperature and heat transfer coefficient are applied. Because of the fact that the burner is designed for operating with different materials, the effects of burner material on heat transfer and combustion processes are investigated. Additionally, material temperatures have been calculated using 1 D method. Finally, soot particles, which are source of luminous radiation in gas turbine combustors, are calculated using Moss-Brookes model. Findings The results show that the flow behavior is obviously different in recirculation region for both turbulence modeling approach, and this difference causes change on flame temperature distribution, particularly in the outer recirculation zone and region close to swirler. In thermal assessment of the burner, it is predicted that material of the burner walls and the applied thermal boundary conditions have significant influence on flame temperature, wall temperature and flow field. The radiation heat transfer also makes a strong impact on combustion inside the burner; however, luminous radiation arising from soot particles is negligible for the current case. Originality/value These types of burners are widely used in research of gas turbine combustion, and it can be seen that the heat transfer effects are generally neglected or oversimplified in the literature. This parametric study provides a basic understanding and methodology of the heat transfer effects on combustion to the researchers.


2021 ◽  
Vol 2108 (1) ◽  
pp. 012097
Author(s):  
Zhihai Cheng ◽  
Jiahao Wang ◽  
Xinhai Han

Abstract Zhundong coal has been widely concerned because of its high alkali metal content, which brings great danger to the combustion of boiler. Therefore, it is extremely necessary to study the laws and characteristics of alkali metal influencing combustion in the burning process of zhundong coal. A gas-solid two-phase flow combustion model of pulverized coal containing NaCl was established by using Fluent software and FactSage software in a hot experimental combustion furnace. The influence of different NaCl content in pulverized coal on pulverized coal combustion process was discussed. The results show that with the increase of NaCl content in pulverized coal from 0 to 1% and 2%, the flame center temperature in the furnace increases about 80°C and 120°C under the same coal content, so it can be concluded that the increase of NaCl content can promote the combustion process of pulverized coal in the furnace. At the same time, it can be calculated that, with the increase of NaCl content, the flame range of the combustion region inside the furnace increases by 1/3. Because NaCl is decomposed by heat during combustion to help combustion, and the radiation heat transfer increases, the flame radiation range inside the furnace will increase.


2021 ◽  
Vol 2083 (2) ◽  
pp. 022052
Author(s):  
Changqi Chen ◽  
Tianshu Xi ◽  
Yanan Zhang

Abstract The Final Optic Assembly (FOA) is one of the key components of the inertial confinement nuclear fusion device. The temperature change in the FOA is related to the laser frequency conversion efficiency of the frequency doubling crystal. In order to research the temperature control of FOA, this paper considers the internal atmosphere and internal structure of FOA, designed and fabricated a vacuum temperature control experiment box, and set up heat sources inside the box to simulate the internal heating of the FOA. This article uses different radiation heat transfer models to analysis the temperature field of the vacuum experiment box. Compare the thermal simulation results of the S2S model and the DO model, and compare them with the actual temperature of the vacuum experiment box under the same boundary conditions. The results show that the S2S model fits well with the experimental results and is more suitable for thermal analysis of FOA, which is of great significance to the follow-up FOA temperature control research.


Sign in / Sign up

Export Citation Format

Share Document