The influence of water on the seismic response of waterfront retaining walls

1992 ◽  
Vol 44 (4) ◽  
pp. 859-862 ◽  
Author(s):  
J.E.T. Menezes ◽  
M.Matos Fernandes
2020 ◽  
Vol 1 (1) ◽  
Author(s):  
Xiaowei Wang ◽  
Yutao Pang ◽  
Aijun Ye

AbstractCoastal highway bridges are usually supported by pile foundations that are submerged in water and embedded into saturated soils. Such sites have been reported susceptible to scour hazard and probably liquefied under strong earthquakes. Existing studies on seismic response analyses of such bridges often ignore the influence of water-induced hydrodynamic effect. This study assesses quantitative impacts of the hydrodynamic effect on seismic responses of coastal highway bridges under scour and liquefaction potential in a probabilistic manner. A coupled soil-bridge finite element model that represents typical coastal highway bridges is excited by two sets of ground motion records that represent two seismic design levels (i.e., low versus high in terms of 10%-50 years versus 2%-50 years). Modeled by the added mass method, the hydrodynamic effect on responses of bridge key components including the bearing deformation, column curvature, and pile curvature is systematically quantified for scenarios with and without liquefaction across different scour depths. It is found that the influence of hydrodynamic effect becomes more noticeable with the increase of scour depths. Nevertheless, it has minor influence on the bearing deformation and column curvature (i.e., percentage changes of the responses are within 5%), regardless of the liquefiable or nonliquefiable scenario under the low or high seismic design level. As for the pile curvature, the hydrodynamic effect under the low seismic design level may remarkably increase the response by as large as 15%–20%, whereas under the high seismic design level, it has ignorable influence on the pile curvature.


1992 ◽  
Vol 118 (11) ◽  
pp. 1787-1803 ◽  
Author(s):  
Thomas J. Siller ◽  
Dorothy D. Frawley

2020 ◽  
pp. 2150006
Author(s):  
SIBO MENG ◽  
YANG DING

In this paper, a stochastic dynamic analysis method for cable-stayed bridges subjected to multi-dimensional and multi-supported earthquake and waves is established based on the pseudo-excitation method. The Monte Carlo method is used to analyze the influence of excitation nonlinearity on the bridge structure response, and the applicability of this method is verified. Stochastic response characteristic of coastal cable-stayed bridges subjected to multi-dimensional and multi-supported earthquake and waves is studied. The influence of water–structure interaction on the stochastic seismic response of main components of the cable-stayed bridge is described, and the influence of key parameters is analyzed. The results show that the influence of excitation nonlinearity on the response of the cable-stayed bridge can be neglected. A greater energy input caused by the rigid additional mass of the hydrodynamic pressure is the reason for the increasing of the seismic response. The influence of stochastic response of the underwater structure of the tower is changed with the site conditions. For the ground motion acceleration input energy being distributed in the high-frequency domain, the water–structure interaction has a greater effect on stochastic seismic response of the underwater structure of the tower. The influence of water–structure interaction on the stochastic seismic response of the underwater structure of the cable-stayed bridge increases with the increasing of the wave height and water depth.


Sign in / Sign up

Export Citation Format

Share Document