geosynthetic reinforced soil
Recently Published Documents


TOTAL DOCUMENTS

364
(FIVE YEARS 84)

H-INDEX

32
(FIVE YEARS 4)

2022 ◽  
Vol 12 (1) ◽  
pp. 516
Author(s):  
Guangqing Yang ◽  
Yunfei Zhao ◽  
He Wang ◽  
Zhijie Wang

Back-to-back geosynthetic-reinforced soil walls (BBGRSWs) are commonly used in embankments approaching bridges and narrow spaces. However, the available literature and design guidelines for BBGRSWs are limited. The aims of this research were to develop a greater understanding of the working performance of BBGRSWs and to optimize the design method of a BBGRSW to ensure the cost-efficiency as well as the stability of the structure. On the basis of a monitored BBGRSW structure located in China, we established a numerical model. The parameters of the materials used in the actual project were determined through triaxial and tensile tests. The numerical results were compared with the measured results in the field to verify the correctness of the selected parameters. Two parameters were investigated by the FEM method: the reinforcement length and the arrangement. The FEM analysis indicated that post-construction deformations such as displacement and settlement could be reduced by reinforcing the same layer on both sides. Longer reinforcements were needed to achieve the same performance if the reinforcements were cross-arranged. Thus, BBGRSWs can have a superior performance if the reinforcements are connected in the middle from both sides. Even with longer reinforcements, the safety factor of the wall with a cross-arranged reinforcement was smaller than that with same-layered reinforcements.


2021 ◽  
Vol 11 (23) ◽  
pp. 11226
Author(s):  
Myoung-Soo Won ◽  
Christine Patinga Langcuyan

The geosynthetic reinforced soil (GRS) bridge abutment with a staged-construction full height rigid (FHR) facing and an integral bridge (IB) system was developed in Japan in the 2000s. This technology offers several advantages, especially concerning the deformation behavior of the GRS-IB abutment. In this study, the effects of GRS in the bridge abutment with FHR facing and the effects of geosynthetics reinforcement length on the deformation behavior of the GRS–IB are presented. The numerical models are analyzed using the finite element method (FEM) in Plaxis 2D program. The results showed that the GRS–IB model exhibited the least lateral displacements at the wall facing compared to those of the IB model without geosynthetics reinforcement. The geosynthetics reinforcement in the bridge abutment with FHR facing has reduced the vertical displacement increments by 4.7 times and 1.3 times (maximum) after the applied general traffic loads and railway loads, respectively. In addition, the numerical results showed that the increase in the length-to-height (L/H) ratio of reinforcement from 0.3H to 1.1H decreases the maximum lateral displacements by 29% and the maximum vertical displacements by 3% at the wall facing by the end of construction. The effect of the reinforcement length on the wall vertical displacements is minimal compared to the effect on the wall lateral displacements.


2021 ◽  
Vol 21 (11) ◽  
pp. 04021223
Author(s):  
Abdelkader Dram ◽  
Umashankar Balunaini ◽  
Sadok Benmebarek ◽  
Sasanka Mouli Sravanam ◽  
Madhira R. Madhav

Sign in / Sign up

Export Citation Format

Share Document