Advances in Bridge Engineering
Latest Publications


TOTAL DOCUMENTS

50
(FIVE YEARS 50)

H-INDEX

1
(FIVE YEARS 1)

Published By Springer Science And Business Media LLC

2662-5407

2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Renda Zhao ◽  
Kaifeng Zheng ◽  
Xing Wei ◽  
Hongyu Jia ◽  
Haili Liao ◽  
...  

AbstractBridge construction is one of the cores of traffic infrastructure construction. To better develop relevant bridge science, this paper introduces the main research progress in China and abroad in 2020 from 16 aspects. The content consists of four major categories in 16 aspects. The first part is about the bridge structure, including concrete bridge and high-performance materials, steel bridges, composite girders. The second part is about the bridge disaster prevention and mitigation, including bridge seismic resistance, wind resistance of bridge, train-bridge coupling vibration research, bridge hydrodynamics, the durability of the concrete bridges, fatigue of steel bridge, temperature field and temperature effect of bridge; The third part is about the bridge analyses, including numerical simulation of bridge structure, box girder and cable-stayed bridge analysis theories. The last part is concerning the bridge emerging technologies, including bridge informatization and intelligent bridge, the technology in bridge structure test, bridge assessment and reinforcement, prefabricated concrete bridge structure.


2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Wanli Yang ◽  
Sijing Li ◽  
Junling Liu ◽  
Wenbo Wu ◽  
Hui Li ◽  
...  

AbstractSolitary wave is often used to simulate tsunami propagating in deep water and breaking solitary wave is often used to simulate tsunami bore propagating in shallow water or on land. The breaking solitary wave force on box-girder, which has been widely used in bridge engineering in coastal areas of China, receives few attentions. This study aims to investigate characteristics and generation mechanism of breaking solitary wave force on box-girder numerically. A numerical wave flume with a 1:20 slope was built firstly, then the solitary wave generation ability, wave deformation and wave breaking on the slope, as well as wave force calculation precision, are validated. The water depth 0.6 m, the slope gradient 1:20 and the distance between slope top and box-girder 2.0 m remain unchanged, while the wave height and clearance changes in different cases. The time histories of horizontal force and vertical force on box-girder can be divided into three and four stages respectively according to their characteristics. The surface of box-girder is decomposed into a series of panels to facilitate exploring tsunami bore force generation mechanism. Results show horizontal force is dominated by static pressure on upstream vertical panels and vertical force is mainly contributed by static pressure on upstream horizontal panels and on panels in the chambers. Tsunami bore overtopping the box-girder deck impacts the top panel vigorously and results in the peak value of negative vertical force.


2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Longfei Xing ◽  
Mingjin Zhang ◽  
Yongle Li ◽  
Zhijie Zhang ◽  
Dianguo Yin

AbstractTo have a comprehensive understanding of the complex wind environment at a bridge site in the mountainous area, a numerical simulation study of the wind environment under the mean and the fluctuating wind flow conditions was carried out and the results were compared. First, according to the weighted amplitude wave superposition (WAWS) method, the fluctuating wind speed time history was compiled by UDF. And the wind speed time history was added to the inlet boundary of a numerical empty wind tunnel to verify the feasibility of the simulation method of the fluctuating wind. Then, with a bridge in the mountainous area in Yunnan as the engineering background, a numerical simulation study of the wind environment of the bridge site area under the mean wind flow and the fluctuating wind flow was carried out by using FLUENT. The study indicates that Large Eddy Simulation (LES) method more accurate than Reynold average method with a sufficient number of grids and a short enough time step. The average wind characteristics of the bridge site under the mean wind and the fluctuating wind are not much different. The fluctuating wind characteristics at the bridge site are mainly affected by the terrain and the pulsating component of the wind flow. There are different terrain pulsation effects at the bridge site under different incoming flow directions.


2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Tianyong Jiang ◽  
Donghai Yu ◽  
Min Xiao ◽  
Lingyun Li ◽  
Lei Wang

AbstractCombination of carbon fiber reinforced polymer (CFRP) tendon and reinforced concrete encased steel composite (RCESC) beam can improve the workability and the energy dissipation capacity of members. In this paper, three RCESC beams reinforced with steel bars or CFRP bars were designed and fabricated to study the bond-slip behavior between I-shaped steel and CFRP reinforced concrete and the damage states between bond-slip interfaces of the beams. The lead zirconate titanate (PZT) patch as stress wave actuator, the smart aggregates (SAs) were installed in concrete as the sensors to collect the stress wave signal. A method based on piezoelectric active sensing was developed to monitor the bond-slip damage of CFRP-RCESC beam. The changes of responding signals were characterized in time- and frequency- domains. The characteristic information of bond-slip damage was further quantified by wavelet packet energy. Results show the bond-slip resistance of the CFRP-RCESC beams can be improved by increasing reinforcement ratio and elastic modulus of the main bars. The bond-slip damage process of the specimens can be effectively monitored by the active sensing method.


2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Deyi Chen ◽  
Shiping Huang ◽  
Zhenyu Wang

AbstractPedestrian-induced footbridge vibration comfort level is a complex problem that has been studied for a long time. However, no consensus has been reached on a quantitative calculation index for assessing vibration comfort level. Only simple comfort limits, rather than specific relationships between comfort level and the vibration endurance capacity of pedestrians, are currently available for assessing vibration comfort level of footbridges. This article aims to propose a sensitivity model for pedestrian-induced vibration comfort calculation based on the vibration endurance capacity of pedestrians and the vibration response of footbridges. The concepts of “human body resistance” and “vibration effect” were established according to the principle of probability and statistics. Mathematical definition of sensitivity was put forward. Calculation expressions for a pedestrian and pedestrians were deduced respectively. A theory of pedestrian-induced footbridge vibration comfort level was proposed. Field survey and experiment were conducted, the results of the field survey demonstrated that sensitivity values were in good agreement with the international vibration comfort standards. Furthermore, the field experiment results showed that the errors between the experimental results and the calculated results were within 6%. The proposed sensitivity theory can be used for pedestrian-induced footbridge vibration comfort quantitative calculation.


2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Dinh Hung Nguyen ◽  
Hong Nghiep Vu ◽  
Thac Quang Nguyen

AbstractIncreasing the number of small and medium-sized bridges is a need to improve accessibility in rural areas of the Mekong River Delta of Vietnam. Many types of bridge structures can be the suitable selection for rural bridges, on which the overall load of the operating truck is about 100kN. An objective of this paper is to propose a double-tee (DT) girder with the span length varying from 12 m to 15 m for the rural bridge types B and C in the Vietnamese standard. New concrete aggregate using crushed sand and fly ash for the DT girders is also examined to solve the scarcity of natural sand and environmental problem from industrial waste. A full-scale DT girder with a span length of 12 m is tested to confirm the capacity of the proposed design. Result finds out that the concrete sand, which the natural sand is replaced by 90% of the crushed sand and 10% of the fly ash by weight, could be well applied for the proposed DT girders. Another finding is a linear elastic uncracked response of the tested DT girder under loads of a rural vehicle and concrete blocks of 306kN. Therefore, the proposed DT girders are suggested to the rural bridges.


2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Qiulei Wang ◽  
Qi Jiang ◽  
Gang Hu ◽  
Xiao Chen ◽  
Chao Li ◽  
...  

AbstractThis paper investigates the effect of fitting fins at the corners of a square cylinder on aerodynamic characteristics of the cylinder via wind tunnel tests and large eddy simulations (LES). Although it has been recognized that the corner fins have a remarkable effect on aerodynamic characteristics of a square cylinder, no study has been carried out to systematically evaluate this effect and reveal the underlying mechanism. Three types of corner fin configurations, i.e. fins fitted only to the leading corners, fins fitted only to the trailing corners, and fins fitted to both leading and trailing corners were studied. It was found that the corner fins significantly influence aerodynamic characteristics, such as mean drag coefficient, fluctuating lift coefficient, and vortex shedding of the cylinder. The influences of these corner fin configurations are very different. In general, the leading and trailing fins have an opposite effect on these characteristics. The mechanisms underlying these effects were clarified based on the flow regime visualized via LES. The interesting findings have practical significances not only for reducing aerodynamic forces and wind-induced vibration of infrastructures, but also for enhancing wind-induced vibration-based energy harvesting.


2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Man Liao ◽  
Bin Wu ◽  
Xianzhi Zeng ◽  
Kailai Deng

AbstractIn the seismic design of long-span bridges, the classic bi-linear model was used to simulate the frictional restoring force of the rubber bearings. However, in actual earthquake, the rubber bearing suffered fluctuating axial pressure in earthquake, even separated from the beam when vertical component of the earthquake was too strong. Employing the bi-linear model for the bearing may incorrectly estimate the seismic response of the bearings, as well as the whole bridge. This paper developed a nonlinear frictional bearing model, which can consider the variation of the frictional restoring force in the bearings, even the separation with the beam in vertical directions. A typical continuous beam bridge was modeled in ABAQUS, and incremental dynamic analysis was conducted for the quantitative comparison of the seismic responses using different bearing models. The intensity measure was selected as the ratio of the peak ground acceleration (PGA) in the vertical direction to the PGA in the horizontal direction. The analysis results indicated that the different bearing model led to the significant different seismic response for the bearings and piers, even the vertical component was small. The bi-linear bearing model would underestimate the seismic demand of the bearing and piers.


2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Lei Tong ◽  
Rongxia Wang ◽  
Dongsheng Wang

AbstractThe box girder of the Miaoziping Bridge, a three-span prestressed concrete continuous rigid-frame bridge, suffered a serious crack in its box section’s web near the 1/6 to 1/2 length of the side span and the middle-span length of 1/4 to 3/4, as a result of the 2008 Wenchuan earthquake, which also caused large lateral residual displacements at both ends of the side span. In this study, eight strong-motion records near the bridge site and two other records (El Centro and Taft) are selected as inputs for time-history analysis of the bridge. The cantilever construction process and initial stress of the box girder are considered in a bridge model for seismic numerical simulation. Further, the simulation results are compared with the actual earthquake damage. The cracking mechanism, influencing factors and control of the girder crack damage are discussed. The high-stress zones of the box girder agree with the seismic damage observed, even various seismic inputs are considered. The findings reveal that the maximum (principal) tensile stress of the girder exceeds the tensile strength of the concrete under the seismic excitations, and cracks occur. Under various input directions of ground motions, the proportion of the main girder stresses induced by the earthquake shows differences. After the failure of the shear keys in the transverse direction of the bridge, the stresses of the girder decrease in the mid-span. However, the beams at both ends of the side spans revealed large lateral displacements. Considering that the uplift of the beam ends, stress and axial torque of the girder’s side span are greatly reduced. Setting bi-directional friction pendulum bearings on the transition pier is an effective damping measure to control web cracking of the mid-span and lateral drifts of the beam ends.


Sign in / Sign up

Export Citation Format

Share Document