Wedge sliding along the direction of the intersection line of two inclined planes as a landslide bed

Author(s):  
D. Gerthsen

The prospect of technical applications has induced a lot of interest in the atomic structure of the GaAs on Si(100) interface and the defects in its vicinity which are often studied by high resolution transmission electron microscopy. The interface structure is determined by the 4.1% lattice constant mismatch between GaAs and Si, the large difference between the thermal expansion coefficients and the polar/nonpolar nature of the GaAs on Si interface. The lattice constant mismatch is compensated by misfit dislocations which are characterized by a/2<110> Burgers vectors b which are oriented parallel or inclined on {111} planes with respect to the interface. Stacking faults are also frequently observed. They are terminated by partial dislocations with b = a/6<112> on {111} planes. In this report, the atomic structure of stair rod misfit dislocations is analysed which are located at the intersection line of two stacking faults at the interface.A very thin, discontinous film of GaAs has been grown by MBE on a Si(100) substrate. Fig.1.a. shows an interface section of a 27 nm wide GaAs island along [110] containing a stair rod dislocation. The image has been taken with a JEOL 2000EX with a spherical aberration constant Cs = 1 mm, a spread of focus Δz = 10 nm and an angle of beam convergence ϑ of 2 mrad.


2017 ◽  
Vol 38 (4) ◽  
pp. 045002 ◽  
Author(s):  
Carl E Mungan ◽  
Trevor C Lipscombe
Keyword(s):  

Author(s):  
C. Landry ◽  
B. Picard ◽  
T. Parent-Simard ◽  
J.-S. Plante ◽  
M. Picard

The integration of monolithic ceramic blades into sub-megawatt microturbines is a low-cost option for increasing Turbine Inlet Temperature and efficiency. The Inside-Out Ceramic Turbine (ICT) is a promising concept for the integration of ceramic blades by loading each blades in compression using a carbon-polymer composite rim to convert the blade radial loads to tangential hoop stress. High tangential velocities lead to elevated radial displacement of the rim and, therefore, the rotor hub needs to be able to maintain the contact with the blades for a large range of radial displacements. This displacements comes with hub structural challenges and rotordynamics considerations. For these reasons, blade tip speed have been previously limited to about 360 m/s. This paper presents a hub design that allows high radial displacement using the combination of inclined blade roots, inclined hub grooves and an axial spring. The contact between the blade root and the hub is maintained through the inclined planes by the axial forces from the spring creating internal friction in the rotor that can induce sub-synchronous rotordynamics instabilities. The onset of instabilities is investigated experimentally with cold spin tests of a simplified ICT prototype. The results first show that the concept remains stable up to the maximum speed tested of 127 kRPM (tip speed of 387 m/s) if the spring is designed such that it remains in contact with the blade roots at all time. On the other hand, when reducing the preload sufficiently to test the limits of the concept, the rotor first mode became unstable at 120 kRPM resulting in failure of the prototype. These results suggest that, provided a sufficient spring preload to prevent excessive relative motion, the blades can reach the desired radial displacements, removing the main constraint on ICT tip speed.


Sign in / Sign up

Export Citation Format

Share Document