lattice constant
Recently Published Documents


TOTAL DOCUMENTS

754
(FIVE YEARS 91)

H-INDEX

50
(FIVE YEARS 5)

Author(s):  
M.N. Potkina ◽  
I.S. Lobanov ◽  
H. Jónsson ◽  
V.M. Uzdin

2022 ◽  
Vol 19 (1 Jan-Jun) ◽  
Author(s):  
Syella Ayunisa Rani ◽  
Heru Kuswanto ◽  
Himawan Putranta ◽  
Aditya Yoga Purnama ◽  
Wipsar Sunu Brams Dwandaru

This study aims to find equations and simulations that satisfy the characteristics of graphene’s energy dispersion and identify misconceptions that may occur. Here we give students nine articles about graphene’s dispersion energy. They were asked to identify the equations, parameters, and software used in each of the articles. The assignment was then to make the distribution of the data in a spreadsheet. The parameters used were the lattice constant of 2.46 Å, the range of the k wave function for the x and y axes of -2πa to 2πa, and the interval for each range of 0.1. Each equation is divided into two parts, E(+) and E(-). The analysis was carried out by making a slice in the middle of the x and y axes, as well as the main and off-diagonals. Graphene has Dirac points where the band gap is zero. This means that there is no distance or very small distance between the valence and conduction bands. From this activity, it can be concluded that Rozhkov (2016) has the equations and simulations that best satisfy graphene’s dispersion energy. Misconceptions occur in almost all existing equations and simulations.


Crystals ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 31
Author(s):  
He Gao ◽  
Shijian Wang ◽  
Da Xu ◽  
Xueshen Wang ◽  
Qing Zhong ◽  
...  

As Nb films are widely used as superconducting electrodes of Josephson junctions, it is important to investigate the properties of Nb films in order to fabricate high-quality Josephson junctions. In this work, we conducted a comprehensive analysis of the relationships among the properties of DC magnetron sputtered Nb films with a constant power fabricated at the National Institute of Metrology (China). The film properties, including superconductivity, stress, lattice constant, and surface roughness, were investigated. It was found that in the case of constant power and Ar pressure, the stress and other parameters of the Nb films can maintain a relatively stable state during the continuous consumption of the target material.


Crystals ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 4
Author(s):  
Huili Zhang ◽  
Defang Lu ◽  
Yu Sun ◽  
Yunchang Fu ◽  
Lumei Tong

The elastic constants, core width and Peierls stress of partial dislocation in germanium has been investigated based on the first-principles calculations and the improved Peierls−Nabarro model. Our results suggest that the predictions of lattice constant and elastic constants given by LDA are in better agreement with experiment results. While the lattice constant is overestimated at about 2.4% and most elastic constants are underestimated at about 20% by the GGA method. Furthermore, when the applied deformation is larger than 2%, the nonlinear elastic effects should be considered. And with the Lagrangian strains up to 8%, taking into account the third-order terms in the energy expansion is sufficient. Except the original γ—surface generally used before (given by the first-principles calculations directly), the effective γ—surface proposed by Kamimura et al. derived from the original one is also used to study the Peierls stress. The research results show that when the intrinsic−stacking−fault energy (ISFE) is very low relative to the unstable−stacking−fault energy (USFE), the difference between the original γ—surface and the effective γ—surface is inapparent and there is nearly no difference between the results of Peierls stresses calculated from these two kinds of γ—surfaces. As a result, the original γ—surface can be directly used to study the core width and Peierls stress when the ratio of ISFE to the USFE is small. Since the negligence of the discrete effect and the contribution of strain energy to the dislocation energy, the Peierls stress given by the classical Peierls−Nabarro model is about one order of magnitude larger than that given by the improved Peierls−Nabarro model. The result of Peierls stress estimated by the improved Peierls−Nabarro model agrees well with the 2~3 GPa reported in the book of Solid State Physics edited by F. Seitz and D. Turnbull.


Nanomaterials ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 3457
Author(s):  
Jihoon Choi ◽  
Heeso Noh

We numerically demonstrated single-port coherent perfect loss (CPL) with a Fabry–Perot resonator in a photonic crystal (PC) nanobeam by using a perfect magnetic conductor (PMC)-like boundary. The CPL mode with even symmetry can be reduced to a single-port CPL when a PMC boundary is applied. The boundary which acts like a PMC boundary, here known as a PMC-like boundary, and can be realized by adjusting the phase shift of the reflection from the PC when the wavelength of the light is within the photonic bandgap wavelength range. We designed and optimized simple Fabry–Perot resonator and coupler in nanobeam to get the PMC-like boundary. To satisfy the loss condition in CPL, we controlled the coupling loss in the resonator by modifying the lattice constant of the PC used for coupling. By optimizing the coupling loss, we achieved zero reflection (CPL) in a single port with a PMC-like boundary.


2021 ◽  
Vol 7 (12) ◽  
pp. 159
Author(s):  
Fatima Abuova ◽  
Talgat Inerbaev ◽  
Aisulu Abuova ◽  
Nurpeis Merali ◽  
Nurgul Soltanbek ◽  
...  

Structural, electronic, and magnetic properties of Mn2Co1-xVxZ (Z = Ga, Al, x = 0, 0.25, 0.5, 0.75, 1) Heusler alloys were theoretically investigated for the case of L21 (space group Fm3¯m), L21b (L21 structure with partial disordering between Co and Mn atoms) and XA (space group F4¯3m) structures. It was found that the XA structure is more stable at low V concentrations, while the L21 structure is energetically favorable at high V concentrations. A transition from L21 to XA ordering occurs near x = 0.5, which qualitatively agrees with the experimental results. Comparison of the energies of the L21b and XA structures leads to the fact that the phase transition between these structures occurs at x = 0.25, which is in excellent agreement with the experimental data. The lattice parameters linearly change as x grows. For the L21 structure, a slight decrease in the lattice constant a was observed, while for the XA structure, an increase in a was found. The experimentally observed nonlinear behavior of the lattice parameters with a change in the V content is most likely a manifestation of the presence of a mixture of phases. Almost complete compensation of the magnetic moment was achieved for the Mn2Co1-xVxZ alloy (Z = Ga, Al) at x = 0.5 for XA ordering. In the case of the L21 ordering, it is necessary to consider a partial disorder of atoms in the Mn and Co sublattices in order to achieve compensation of the magnetic moment.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Can Ding ◽  
Zhenjiang Gao ◽  
Xing Hu ◽  
Zhao Yuan

The contact is the core element of the vacuum interrupter of the mechanical DC circuit breaker. The electrical conductivity and welding resistance of the material directly affect its stability and reliability. AgSnO2 contact material has low resistivity, welding resistance, and so on. This material occupies an important position of the circuit breaker contact material. This research is based on the first-principles analysis method of density functional theory. The article calculated the lattice constant, enthalpy change, energy band, electronic density of state, charge density distribution, population, and conductivity of Ce, C single-doped, and Ce-C codoped SnO2 systems. The results show that Ce, C single doping, and Ce-C codoping all increase the cell volume and lattice constant. When the elements are codoped, the enthalpy change is the largest, and the thermal stability is the best. It has the smallest bandgap, the most impurity energy levels, and the least energy required for electronic transitions. The 4f orbital electrons of the Ce atom and the 2p orbital electrons of C are the sources of impurity energy near the Fermi level. When the elements are codoped, more impurity energy levels are generated at the bottom of the conduction band and the top of the valence band. Its bandgap is reduced so conductivity is improved. From the charge density and population analysis, the number of free electrons of Ce atoms and C atoms is redistributed after codoping. It forms a Ce-C covalent bond to further increase the degree of commonality of electrons and enhance the metallicity. The conductivity analysis shows that both single-doped and codoped conductivity have been improved. When the elements are codoped, the conductivity is the largest, and the conductivity is the best.


2021 ◽  
Vol 12 (5) ◽  
pp. 6093-6099

Sol-gel method incorporating auto combustion is used to prepare Al3+ substituted Ni0.4Zn0.35Co0.25Fe2-xAlxO4 with concentration (x = 0.0, 0.10, 0.20) samples. XRD shows their Cubic spinel structure with lattice constant increasing and crystallite sizes decreasing from 32.15 nm to 22.89 nm with Al3+. The spinel structure is confirmed with the help of FT-IR. They have isotropic nature with the single ferrimagnetic domain as given by VSM. The product is widely used.


Sign in / Sign up

Export Citation Format

Share Document