Health implications of nuclear power production

1979 ◽  
Vol 2 (3) ◽  
pp. 201
1980 ◽  
Vol 7 (3) ◽  
pp. 229-237 ◽  
Author(s):  
Asit K. Biswas

Discussions on environmental implications of nuclear energy have so far been concentrated on radiological aspects: disposal of radioactive wastes, safety of nuclear power production, safe handling of plutonium, and problems associated with uranium mining. There are, however, several environmental issues associated with nuclear power production that are non-radiological in nature: thermal pollution and attendant effects on aquatic life, problems associated with land-use requirements, aesthetic considerations, habitat alterations, and atmospheric effects. These different non-radiological environmental implications of nuclear energy are reviewed.The paper concludes that, while there are some environmental problems which exist at present, and a few more could emerge in the future, all these problems appear to be solvable with the present state of technological development. The extent of environmental degradation can be significantly reduced by appropriate design and planning.


2021 ◽  
Author(s):  
Karin Hain ◽  
Ala Aldahan ◽  
Mats Eriksson ◽  
Robin Golser ◽  
Gideon M. Henderson ◽  
...  

<p><span>By analysing the two long-lived anthropogenic Uranium (U) isotopes U-233 and U-236 in different compartments </span><span>of the environment affected by releases of nuclear power production or by global fallout from nuclear weapons tests</span><span>, we showed that the corresponding isotopic ratios U-233/U-236</span><span> differ by one order of magnitude. Based on these experimental results which were obtained with the ultra-sensitive detection method Accelerator Mass Spectrometry, we suggested a representative ratio for nuclear weapons fallout of </span><span>U-233/U-236</span><span> =</span><span> (1.40 ± 0.15) ·10</span><sup><span>-2</span></sup><span> and (0.12 ± 0.01) ·10</span><sup><span>-2</span></sup><span> for releases from nuclear power production. Consequently, the </span><span>U-233/U-236</span><span> ratio not only </span><span>has the potential to become a novel sensitive fingerprint for releases from nuclear industry, but could also serve as a powerful oceanographic tracer due to the conservative behaviour of U in ocean water which does not suffer from chemical fractionation. </span></p><p><span>As a first application of this paired tracer, we studied the distribution of U-233 and U-236 concentrations in addition to I-129 in the Baltic Sea which is known to have received inputs of radionuclides from various contamination sources including the two European reprocessing plants, global fallout from weapons testings and fallout from the Chernobyl accident. Our data indicate an additional unidentified source of reactor U-236 in the Baltic Sea demonstrating the high sensitivity of the U-233/U-236 ratio to distinguish different emission sources in water mixing processes.</span></p>


Sign in / Sign up

Export Citation Format

Share Document