Attachment of articular cartilage chondrocytes to the tissue form of type VI collagen

Author(s):  
Jose Marcelino ◽  
Cahir A. McDevitt

2002 ◽  
Vol 10 (6) ◽  
pp. 464-470 ◽  
Author(s):  
S. Söder ◽  
L. Hambach ◽  
R. Lissner ◽  
T. Kirchner ◽  
T. Aigner


1985 ◽  
Vol 260 (20) ◽  
pp. 11149-11159 ◽  
Author(s):  
M A Gibson ◽  
E G Cleary
Keyword(s):  


2002 ◽  
Vol 50 (8) ◽  
pp. 1049-1058 ◽  
Author(s):  
Andreas Naumann ◽  
James E. Dennis ◽  
Amad Awadallah ◽  
David A. Carrino ◽  
Joseph M. Mansour ◽  
...  

Cartilage is categorized into three general subgroups, hyaline, elastic, and fibrocartilage, based primarily on morphologic criteria and secondarily on collagen (Types I and II) and elastin content. To more precisely define the different cartilage subtypes, rabbit cartilage isolated from joint, nose, auricle, epiglottis, and meniscus was characterized by immunohistochemical (IHC) localization of elastin and of collagen Types I, II, V, VI, and X, by biochemical analysis of total glycosaminoglycan (GAG) content, and by biomechanical indentation assay. Toluidine blue staining and safranin-O staining were used for morphological assessment of the cartilage subtypes. IHC staining of the cartilage samples showed a characteristic pattern of staining for the collagen antibodies that varied in both location and intensity. Auricular cartilage is discriminated from other subtypes by interterritorial elastin staining and no staining for Type VI collagen. Epiglottal cartilage is characterized by positive elastin staining and intense staining for Type VI collagen. The unique pattern for nasal cartilage is intense staining for Type V collagen and collagen X, whereas articular cartilage is negative for elastin (interterritorially) and only weakly positive for collagen Types V and VI. Meniscal cartilage shows the greatest intensity of staining for Type I collagen, weak staining for collagens V and VI, and no staining with antibody to collagen Type X. Matching cartilage samples were categorized by total GAG content, which showed increasing total GAG content from elastic cartilage (auricle, epiglottis) to fibrocartilage (meniscus) to hyaline cartilage (nose, knee joint). Analysis of aggregate modulus showed nasal and auricular cartilage to have the greatest stiffness, epiglottal and meniscal tissue the lowest, and articular cartilage intermediate. This study illustrates the differences and identifies unique characteristics of the different cartilage subtypes in rabbits. The results provide a baseline of data for generating and evaluating engineered repair cartilage tissue synthesized in vitro or for post-implantation analysis.



1992 ◽  
Vol 103 (4) ◽  
pp. 1101-1110 ◽  
Author(s):  
C.A. Poole ◽  
S. Ayad ◽  
R.T. Gilbert

The pericellular microenvironment around articular cartilage chondrocytes must play a key role in regulating the interaction between the cell and its extracellular matrix. The potential contribution of type VI collagen to this interaction was investigated in this study using isolated canine tibial chondrons embedded in agarose monolayers. The immunohistochemical distribution of an anti-type VI collagen antibody was assessed in these preparations using fluorescence, peroxidase and gold particle probes in combination with light, confocal and transmission electron microscopy. Light and confocal microscopy both showed type VI collagen concentrated in the pericellular capsule and matrix around the chondrocyte with reduced staining in the tail region and the interconnecting segments between adjacent chondrons. Minimal staining was recorded in the territorial and interterritorial matrices. At higher resolution, type VI collagen appeared both as microfibrils and as amorphous deposits that accumulated at the junction of intersecting capsular fibres and microfibrils. Electron microscopy also showed type VI collagen anchored to the chondrocyte membrane at the articular pole of the pericellular capsule and tethered to the radial collagen network through the tail at the basal pole of the capsule. We suggest that type VI collagen plays a dual role in the maintenance of chondron integrity. First, it could bind to the radial collagen network and stabilise the collagens, proteoglycans and glycoproteins of the pericellular microenvironment. Secondly, specific cell surface receptors exist, which could mediate the interaction between the chondrocyte and type VI collagen, providing firm anchorage and signalling potentials between the pericellular matrix and the cell nucleus. In this way type VI collagen could provide a close functional interrelationship between the chondrocyte, its pericellular microenvironment and the load bearing extracellular matrix of adult articular cartilage.



1988 ◽  
Vol 90 (4) ◽  
pp. 635-643 ◽  
Author(s):  
C.A. Poole ◽  
S. Ayad ◽  
J.R. Schofield

A heterogenous population of intact chondrons extracted from low-speed homogenates of canine tibial cartilage were stained by indirect immunofluorescence methods with a polyclonal antibody to type VI collagen. In each of the four chondron groups examined, anti-(type VI collagen) anti-serum was concentrated in the capsule immediately adjacent to the chondrocyte complex. A constant but weaker fluorescent reaction persists in ‘tail-like’ extensions common to single and double chondrons and in the medial connections between adjacent chondrons in linear columns and aggregated clusters. Frayed collagen bundles typical of chondron preparations did not react with the antibody. Similarly, chondrons reacted with normal rabbit serum, or treated by type VI collagen extraction procedures, showed no staining reaction. The differential localization of type VI collagen in the pericellular capsule is discussed in relation to the maintenance of the chondron's integrity and to the protection of the chondrocyte during dynamic compressive loading.



2007 ◽  
Vol 342-343 ◽  
pp. 133-136
Author(s):  
Jae Bong Choi

The objective of this study was to quantify the zonal difference of the in situ chondron’s Poisson effect under different magnitudes of compression. Fluorescence immunolabeling for type VI collagen was used to identify the pericellular matrix (PCM) and chondron, and a series of fluorescent confocal images were recorded and reconstructed to form quantitative three-dimensional models. The zonal variations in the mechanical response of the chondron do not appear to be due to zonal differences in PCM properties, but rather seem to result from significant inhomogeneities in relative stiffnesses of the extracellular matrix (ECM) and PCM with depth.



1998 ◽  
Vol 37 (3-4) ◽  
pp. 277-293 ◽  
Author(s):  
Gavin m. Winter ◽  
C. Anthony Poole ◽  
Mirna Z. Ilic ◽  
Jacqueline M. Ross ◽  
H. Clem Robinson ◽  
...  


1998 ◽  
Vol 41 (6) ◽  
pp. 986-996 ◽  
Author(s):  
L. Hambach ◽  
D. Neureiter ◽  
G. Zeiler ◽  
T. Kirchner ◽  
T. Aigner


Sign in / Sign up

Export Citation Format

Share Document