Extracellular Matrix
Recently Published Documents


TOTAL DOCUMENTS

20547
(FIVE YEARS 6509)

H-INDEX

260
(FIVE YEARS 57)

2107 ◽  
Vol 33 ◽  
pp. 130-142 ◽  
Author(s):  
GM Cunniffe ◽  
◽  
PJ Díaz-Payno ◽  
JS Ramey ◽  
OR Mahon ◽  
...  

2022 ◽  
Vol 74 ◽  
pp. 101682
Author(s):  
Monique da Silva Dias Babinski ◽  
Lucas Alves Sarmento Pires ◽  
Albino Fonseca Junior ◽  
Jorge Henrique Martins Manaia ◽  
Marcio Antonio Babinski

2022 ◽  
Vol 10 (1) ◽  
pp. 8-14
Author(s):  
N. Eliza ◽  
R. Dewanti-Hariyadi ◽  
S. Nurjanah

Bacillus cereus is known to have the ability to adhere and form biofilms on the surface of stainless steel that causes problems in the food industries. Bacterial biofilms generally can increase resistance to sanitizer treatment. This study aimed to evaluate the ability of peracetic acid-based commercial sanitizer to inactivate B. cereus biofilm on stainless steel (SS) surfaces. Biofilm of B. cereus ATCC 10876 was developed on SS surfaces and treated with 7 commercial peracetic acid-based sanitizers at their recommended dosages. Two sanitizers, i.e. B (peracetic acid and QAC) and F (peracetic acid and acidified water) showing the ability to inactivate B. cereus on solid media at concentration of 200, 400, and 800 ppm were further tested on biofilms with contact times of 1, 3, and 5 minutes. The 48 hours biofilms B. cereus contained 2.78-3.78 CFU/cm2. Both sanitizers B and F had significant effects in inactivating B. cereus biofilm. In general, sanitizer B could reduce more biofilm bacteria at any contact time than sanitizer F. Use of 200 ppm of sanitizer B or F 5 minutes could inactivate 3.04 log CFU/cm2 and 2.68 log CFU/cm2 biofilm, respectively. Exposure of B. cereus biofilm to peracetic acid-based sanitizer resulted in the damage of the extracellular matrix of the biofilms. This study showed that commercial sanitizers containing peracetic acid and quaternary ammonium compounds were effective in inactivating B. cereus biofilms.


2022 ◽  
Vol 23 (2) ◽  
pp. 946
Author(s):  
Christina J. Codden ◽  
Michael T. Chin

Hypertrophic Cardiomyopathy (HCM) is a common inherited disorder characterized by unexplained left ventricular hypertrophy with or without left ventricular outflow tract (LVOT) obstruction. Single-nuclei RNA-sequencing (snRNA-seq) of both obstructive and nonobstructive HCM patient samples has revealed alterations in communication between various cell types, but no direct and integrated comparison between the two HCM phenotypes has been reported. We performed a bioinformatic analysis of HCM snRNA-seq datasets from obstructive and nonobstructive patient samples to identify differentially expressed genes and distinctive patterns of intercellular communication. Differential gene expression analysis revealed 37 differentially expressed genes, predominantly in cardiomyocytes but also in other cell types, relevant to aging, muscle contraction, cell motility, and the extracellular matrix. Intercellular communication was generally reduced in HCM, affecting the extracellular matrix, growth factor binding, integrin binding, PDGF binding, and SMAD binding, but with increases in adenylate cyclase binding, calcium channel inhibitor activity, and serine-threonine kinase activity in nonobstructive HCM. Increases in neuron to leukocyte and dendritic cell communication, in fibroblast to leukocyte and dendritic cell communication, and in endothelial cell communication to other cell types, largely through changes in the expression of integrin-β1 and its cognate ligands, were also noted. These findings indicate both common and distinct physiological mechanisms affecting the pathogenesis of obstructive and nonobstructive HCM and provide opportunities for the personalized management of different HCM phenotypes.


2022 ◽  
Author(s):  
Astros Skuladottir ◽  
Gyda Bjornsdottir ◽  
Egil Ferkingstad ◽  
Gudmundur Einarsson ◽  
Lilja Stefansdottir ◽  
...  

Abstract Carpal tunnel syndrome (CTS) is the most common entrapment neuropathy and has a largely unknown underlying biology. In a genome-wide association study of CTS (Ncases = 48,843, Ncontrols = 1,190,837), we found 53 sequence variants at 50 loci that associate with the syndrome. The most significant association is with a missense variant (p.Glu366Lys) in SERPINA1 that protects against CTS (P = 2.9 × 10−24, OR = 0.76). Through various functional analyses, we conclude that at least 22 genes mediate CTS risk and highlight the role of 19 CTS variants in the biology of the extracellular matrix. We show that the genetic component to the risk is higher in recurrent/persistent cases than nonrecurrent/nonresistant cases. Anthropometric traits including height and BMI are genetically correlated with CTS, in addition to early hormonal-replacement therapy, osteoarthritis, and restlessness. Our findings suggest that the components of the extracellular matrix play a key role in the pathogenesis of CTS.


2022 ◽  
Vol 7 (1) ◽  
Author(s):  
Amy E. Anderson ◽  
Iwen Wu ◽  
Alexis J. Parrillo ◽  
Matthew T. Wolf ◽  
David R. Maestas ◽  
...  

AbstractSoft tissue reconstruction remains an intractable clinical challenge as current surgical options and synthetic implants may produce inadequate outcomes. Soft tissue deficits may be surgically reconstructed using autologous adipose tissue, but these procedures can lead to donor site morbidity, require multiple procedures, and have highly variable outcomes. To address this clinical need, we developed an “off-the-shelf” adipose extracellular matrix (ECM) biomaterial from allograft human tissue (Acellular Adipose Tissue, AAT). We applied physical and chemical processing methods to remove lipids and create an injectable matrix that mimicked the properties of lipoaspirate. Biological activity was assessed using cell migration and adipogenesis assays. Characterization of regenerative immune properties in a murine muscle injury model revealed that allograft and xenograft AAT induced pro-regenerative CD4+ T cells and macrophages with xenograft AAT additionally attracting eosinophils secreting interleukin 4 (Il4). In immunocompromised mice, AAT injections retained similar volumes as human fat grafts but lacked cysts and calcifications seen in the fat grafts. The combination of AAT with human adipose-derived stem cells (ASCs) resulted in lower implant volumes. However, tissue remodeling and adipogenesis increased significantly in combination with ASCs. Larger injected volumes of porcine-derived AAT demonstrated biocompatibility and greater retention when applied allogeneicly in Yorkshire cross pigs. AAT was implanted in healthy volunteers in abdominal tissue that was later removed by elective procedures. AAT implants were well tolerated in all human subjects. Implants removed between 1 and 18 weeks demonstrated increasing cellular infiltration and immune populations, suggesting continued tissue remodeling and the potential for long-term tissue replacement.


Pharmaceutics ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 191
Author(s):  
Kathya Huesca-Urióstegui ◽  
Elsy J. García-Valderrama ◽  
Janet A. Gutierrez-Uribe ◽  
Marilena Antunes-Ricardo ◽  
Daniel Guajardo-Flores

Nanofibers have emerged as a potential novel platform due to their physicochemical properties for healthcare applications. Nanofibers’ advantages rely on their high specific surface-area-to-volume and highly porous mesh. Their peculiar assembly allows cell accommodation, nutrient infiltration, gas exchange, waste excretion, high drug release rate, and stable structure. This review provided comprehensive information on the design and development of natural-based polymer nanofibers with the incorporation of herbal medicines for the treatment of common diseases and their in vivo studies. Natural and synthetic polymers have been widely used for the fabrication of nanofibers capable of mimicking extracellular matrix structure. Among them, natural polymers are preferred because of their biocompatibility, biodegradability, and similarity with extracellular matrix proteins. Herbal bioactive compounds from natural extracts have raised special interest due to their prominent beneficial properties in healthcare. Nanofiber properties allow these systems to serve as bioactive compound carriers to generate functional matrices with antimicrobial, anti-inflammatory, antioxidant, antiseptic, anti-viral, and other properties which have been studied in vitro and in vivo, mostly to prove their wound healing capacity and anti-inflammation properties.


2022 ◽  
Vol 23 ◽  
Author(s):  
Karim Hemati ◽  
Mohammad Hossein Pourhanifeh ◽  
Iman Fatemi ◽  
Azam Hosseinzadeh ◽  
Saeed Mehrzadi

Abstract: Intervertebral disc (IVD) degeneration is a leading cause of lower back pain. Although the etiology of IVD degeneration (IVDD) is unclear, excessive oxidative stress, inflammation and apoptosis and disruption of autophagy play important role in the pathogenesis of IVDD. Therefore, finding a solution to mitigate these processes could stop or reduce the development of IVDD. Melatonin, a powerful antioxidant, plays an important role in regulating cartilage tissue hemostasis. Melatonin inhibits destruction of extracellular matrix (ECM) of disc. Melatonin preserves ECM contents including sox-9, aggrecan, and collagen II through inhibiting matrix degeneration enzymes such as MMP-13. These protective effects may be mediated by the inhibition of oxidative stress, inflammation and apoptosis, and regulation of autophagy in IVD cells.


Sign in / Sign up

Export Citation Format

Share Document