Uniform controllable sets of left-invariant vector fields on noncompact Lie groups

1986 ◽  
Vol 7 (3) ◽  
pp. 213-216 ◽  
Author(s):  
F. Silva Leite

2018 ◽  
Vol 18 (3) ◽  
pp. 337-344 ◽  
Author(s):  
Ju Tan ◽  
Shaoqiang Deng

AbstractIn this paper, we consider a special class of solvable Lie groups such that for any x, y in their Lie algebras, [x, y] is a linear combination of x and y. We investigate the harmonicity properties of invariant vector fields of this kind of Lorentzian Lie groups. It is shown that any invariant unit time-like vector field is spatially harmonic. Moreover, we determine all vector fields which are critical points of the energy functional restricted to the space of smooth vector fields.







2016 ◽  
Vol 13 (04) ◽  
pp. 1650039 ◽  
Author(s):  
M. Parhizkar ◽  
D. Latifi

In this paper, we consider invariant [Formula: see text]-metrics which are induced by invariant Riemannian metrics [Formula: see text] and invariant vector fields [Formula: see text] on homogeneous spaces. We study the flag curvatures of invariant [Formula: see text]-metrics. We first give an explicit formula for the flag curvature of invariant [Formula: see text]-metrics arising from invariant Riemannian metrics on homogeneous spaces and Lie groups. We then give some explicit formula for the flag curvature of invariant Matsumoto metrics, invariant Kropina metrics and invariant Randers metrics.



1970 ◽  
Vol 40 ◽  
pp. 67-84
Author(s):  
Yoshihei Hasegawa

The purpose of this paper is to determine left-invariant vector fields on a Lie group G with a left-invariant Riemannian metric which induces C- flows on G.



2020 ◽  
Vol 27 (1) ◽  
pp. 111-120 ◽  
Author(s):  
Mehri Nasehi ◽  
Mansour Aghasi

AbstractIn this paper, we first classify Einstein-like metrics on hypercomplex four-dimensional Lie groups. Then we obtain the exact form of all harmonic maps on these spaces. We also calculate the energy of an arbitrary left-invariant vector field X on these spaces and determine all critical points for their energy functional restricted to vector fields of the same length. Furthermore, we give a complete and explicit description of all totally geodesic hypersurfaces of these spaces. The existence of Einstein hypercomplex four-dimensional Lie groups and the non-existence of non-trivial left-invariant Ricci and Yamabe solitons on these spaces are also proved.



1999 ◽  
Vol Vol. 3 no. 2 ◽  
Author(s):  
Elisha Falbel ◽  
Pierre-Vincent Koseleff

International audience We define parallelograms of base a and b in a group. They appear as minimal relators in a presentation of a subgroup with generators a and b. In a Lie group they are realized as closed polygonal lines, with sides being orbits of left-invariant vector fields. We estimate the number of sides of parallelograms in a free nilpotent group and point out a relation to the rank of rational series.



2012 ◽  
Vol 62 (6) ◽  
pp. 1532-1547 ◽  
Author(s):  
E. Calviño-Louzao ◽  
J. Seoane-Bascoy ◽  
M.E. Vázquez-Abal ◽  
R. Vázquez-Lorenzo


Sign in / Sign up

Export Citation Format

Share Document