Water and wastewater systems analysis

1991 ◽  
Vol 8 (2) ◽  
pp. 197
Author(s):  
Albert J. Valocchi
2013 ◽  
Vol 67 (11) ◽  
pp. 2576-2581 ◽  
Author(s):  
A. K. Sharma ◽  
S. Cook ◽  
M. N. Chong

Decentralised water and wastewater systems are being implemented to meet growing demand for municipal services either in combination with centralised systems or as standalone systems. In Australia, there has been increased investment in decentralised water and wastewater systems in response to the capacity constraints of existing centralised systems, an extended period of below average rainfall, uncertainly in traditional water sources due to potential climate change impacts, and the need to reduce the environmental impact of urban development. The implementation of decentralised water systems as a mainstream practice at different development scales is impeded by the knowledge gaps on their actual performance in a range of development types and settings. As the wide-spread uptake of these approaches in modern cities is relatively new compared to centralised approaches, there is limited information available on their planning, design, implementation, reliability and robustness. This paper presents a number of case studies where monitoring studies are under way to validate the performance of decentralised water and wastewater systems. The results from these case studies show the yield and reliability of these decentralised systems, as well as the associated energy demand and ecological footprint. The outputs from these case studies, and other monitoring studies, are important in improving decentralised system design guidelines and developing industry wide management norms for the operation and maintenance of decentralised systems.


2005 ◽  
Vol 52 (12) ◽  
pp. 171-179 ◽  
Author(s):  
L. Benedetti ◽  
F. Blumensaat ◽  
G. Bönisch ◽  
G. Dirckx ◽  
N. Jardin ◽  
...  

This work was aimed at performing an analysis of the integrated urban wastewater system (catchment area, sewer, WWTP, receiving water). It focused on analysing the substance fluxes going through the system to identify critical pathways of pollution, as well as assessing the effectiveness of energy consumption and operational/capital costs. Two different approaches were adopted in the study to analyse urban wastewater systems of diverse characteristics. In the first approach a wide ranged analysis of a system at river basin scale is applied. The Nete river basin in Belgium, a tributary of the Schelde, was analysed through the 29 sewer catchments constituting the basin. In the second approach a more detailed methodology was developed to separately analyse two urban wastewater systems situated within the Ruhr basin (Germany) on a river stretch scale. The paper mainly focuses on the description of the method applied. Only the most important results are presented. The main outcomes of these studies are: the identification of stressors on the receiving water bodies, an extensive benchmarking of wastewater systems, and the evidence of the scale dependency of results in such studies.


Sign in / Sign up

Export Citation Format

Share Document